

電子書籍版刊行に寄せて

夫、塩﨑勝彦が算数・数学教育研究(山梨)大会へ向かう途中に亡くなったことは、まだまだしたい事があるはずなのに志半ばで倒れて無念であったろうと思いますが、「数学に永久に到達点はないので、いつまでも志半ばのはずだよ」という子供の言葉に救われました。

この度、私にとっては懐かしい、夫の還暦記念の書籍「数楽しませんか?」を、子供の助けを借りて電子書籍版として再刊することができました。これを機により多くの方々が手にとって、夫の仕事や人となりを知り、また思い出してくださるきっかけになればと思います。

なお、この本の内容のうち夫の著作によるもの、つまり問題の選択 とその解法については、「常に他の人達と学びを共有したい」という 夫の考えに沿って、

クリエイティブ・コモンズ・ライセンス「CC BY 2.1 JP」 http://creativecommons.org/licenses/by/2.1/jp/ の下に提供します。

皆様が、夫の志を継いで、それぞれの道でさらに豊かな実りをもたらしてくだされば、これに勝る喜びはありません。

平成25年8月 塩﨑 慶子

目 次

はじめに	2
筆者のプロフィーノ	v3
〔特別寄稿(覆面算)]5
入試問題への取り絡	且み6
数楽しませんか?	8
〔特別寄稿(覆面第	章)〕の解答32
数楽しましたか?	38
何の変哲もない(?)問題77
そっくりさん	84
クイズ	100
面白い(?)問題	101
クイズの答	102
お寄せいただいた	お言葉103
私が父に教わった。	こと163
あとがき	168

はじめに

いつの間にか、年を重ねて、今年の9月25日に還暦を迎えることになりました。

この機会に今年のはじめ頃、「数学に関する小冊子を作って見ようかな」と内心思っていましたところ、5月頃に、私の誕生日を御存じの数人の方から、まったく「独立に」(数学用語!)同じような提案がなされ、作ることを決心しました。

内容は数学の大学入試問題の本解というよりは別解(のつもり)です。 過去の記憶を頼りに、紙数が許す限り書いたつもりです。これらは研究 会で発表したものや、授業でしゃべったものが大半ですが、一部、他の 先生から教えていただいたもの、生徒から教えられたものも含まれてい ます(これについては コメント で触れています)。

素晴らしい恩師, 先輩, 同輩, 後輩, 教え子に恵まれたためこのような冊子ができたことを心から感謝しています。

この場を借りて、色々と御世話をかけた発起人の方々や編集に御協力 下さった方々に御礼を申し上げます。

平成13年9月 塩﨑 勝彦

筆者のプロフィール

昭和41年4月 大阪府立勝山高等学校教諭となる。昭和49年3月退職

昭和49年4月 大阪教育大学教育学部附属高等学校平野校舎文部教官教諭となる。平成元年3月退職

平成元年4月 私立灘高等学校・中学校教諭となる。

現在に至る。

(補足)

昭和58年 大阪高等学校数学教育会大学入試検討委員会に入る。

昭和59年 同,副委員長を引き受ける。

昭和60年(~平成元年春) 同,委員長となる。

昭和60年8月 日本数学教育学会奈良大会で発表

昭和61年8月14日~9月18日 教職員等中央研修講座に参加(主催文部 省、於つくば)

昭和63年8月 中堅教員研修会の講師を務める(主催大阪府教育委員会)。

平成5年8月 中国の太原へ数学奥林匹克(すなわち数学オリンピック) の視察に行く。

数学奥林匹克总决雷

天安門広場にて

平成9年12月 指導法開発に関する研究発表大会でパネラーを務める。

塩﨑メモの一例

3 228

問題集の種別

3228 (1)
$$0 < A_1 < \alpha \ge 1$$

$$\frac{5\pi}{\alpha} x = \pi \int_0^{A_1} (\alpha^3 + y - \alpha^2 + y^4) dy = \frac{\pi}{6} A_1^3 (2 + 2A_1) \cdots 0$$

$$0 : 1 = \frac{2}{30} A_1^3 (3 + 2A_1)$$

$$\frac{5\pi}{\alpha} x = \pi \int_0^{A_1} (\alpha^3 + y) dy - \frac{2}{3} \pi \alpha^3 = \frac{\pi}{6} (6\alpha^3 A_2 + 3A_1^3 - 4\alpha^3)$$

$$0 : 1 = \frac{2}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

$$0 : 1 = \frac{2}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

$$0 : 1 = \frac{4}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

$$0 : 1 = \frac{4}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

$$0 : 1 = \frac{4}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

$$0 : 1 = \frac{4}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

$$0 : 1 = \frac{4}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

$$0 : 1 = \frac{4}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

$$0 : 1 = \frac{4}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

$$0 : 1 = \frac{4}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

$$0 : 1 = \frac{4}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

$$0 : 1 = \frac{4}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

$$0 : 1 = \frac{4}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

$$0 : 1 = \frac{4}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

$$0 : 1 = \frac{4}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

$$0 : 1 = \frac{4}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

$$0 : 1 = \frac{4}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

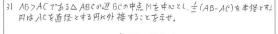
$$0 : 1 = \frac{4}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

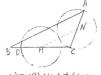
$$0 : 1 = \frac{4}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

$$0 : 1 = \frac{4}{30} (3A_2^3 + 6\alpha^3 A_2 - 4\alpha^3)$$

コメント

筆者が中学生のときのメモ帳から





(条件) ABCK おいて BM=CM DM= \(\frac{1}{2}\) (AB-AC) W=CN

(結論) FMはFINK外接する。

(言正印月)かとかを結ぶ。

年件により

DM== (AB-10) AN=CN 7 5335

: DM+AN= 1 (AB-AE)+ 1 AC = 1 AB

DABCK JUT.

BM=CM, AN=CN(姜14) 中点連結定理により MN=三AB

:. DM+ AN = MN (: DM+AN = 1 AB)

中心間の距離と半径の長さの私が等しいから

AMHANK 91 to 3.

〔特別寄稿(覆面算)〕

松田康雄先生(「初等数学」責任者,北九州市私立明治学園高校に御勤務)と,長光實先生(攤校一筋で,平成7年に定年退職された)からいただきました。

塩﨑勝彦先生の還暦を祝して, 覆面算を作りました。

しおざき=かんれき

(松田康雄)

覆面算

- (1) しおざき=かんれき+です
- (2) しおざき=か^んれ^きで[†](但し、す>ん)
- (3) (誕生日に因んで)

昭和X年Y月Z日 で $X=A^2$, $Y=B^2$, $Z=C^2$, $A^2+B^2=C^2$

(長光實)

(解答は32~37ページ)

著書を手にする筆者

入試問題への取り組み

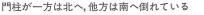
毎年,年が明けると,手当り次第に入試問題を解いていく。数研出版から届く入試問題はまじめに解くが,それ以外に入手した問題はB5の大きさの紙(チラシなども利用)になぐり書き。

筆者が問題を解く手順

- ①大問1問を最後まで一通り読む。
- ②図をかけるものは、まず図をかく。
- ③背景はないか、他人が気付きにくいような解法はないか、考える。
- ④方針を立てる。
- ⑤計算を手抜きする方法はないか考える(筆者は計算は苦手である)。
- ⑥解く。
- ⑦もう一度見なおす (特に答が美しいとき)。
- ⑧欄外に気付いたことをメモしておく。

このようにして4月終り頃には、約1500題のなぐり書きがたまる(さすがに、阪神大震災のときは500題位であった)。

以前は書いては捨て、書いては捨て、の繰り返しであったが、十数年前から清書して残すようになった。毎年6月頃、数研出版の入試問題集を入手したら早速清書に取りかかる。1番から順に解いて行くという几帳面な性格ではない筆者は、コクヨの情報カードに気に入った問題から解いていく。なぐり書きしたものがあればそれをもう一度吟味して解く。



図書室の惨状

(いずれも阪神大震災のときの灘校)

清書といっても最初のうちは乱雑であったが、年々、美しく書くようになってきた。たとえば、以前はグラフはフリーハンドだったが、何年か前から極力、テンプレートを使うようにしている(円、楕円などのテンプレートはどこでも売っているが、放物線、正弦曲線のテンプレートはなかなか見つからなかった)。

年をとるに従って(現在のところ)解く問題数はふえていっている。 「ボケ封じ」と思って時間の許す限り問題を解いている(3人の子供が 成人したこともあり、思う存分、数学とつきあえる時間と環境を与えて くれた妻に感謝!)。

こんなにやっていても毎年いくつか新しいことに気付いたり、生徒に 教えられることもある。まだまだ頑張らなければ……と思う。

修学旅行引率のとき 車中で問題を解いている筆者

左:卒業生 郡山君,中:筆者,右:ピーター・フランクル先生

数楽しませんか?

印象に残った問題, 印象に残った解答を集めてみた。

数学に縁のある方、 興味のある方へ

楽しんでいただくために、また、1 題でも多く入れたいために、解答はかなり手抜きしている。もし、もっとうまい解法があれば御教授の程を。

数学に縁のない方へ

コメントだけでも読まれては…

ではスタート!

—1—

 $(x^2+x-5)(x^2+x-7)+1$ を因数分解せよ。

('00 創価大)

9

a>0, b>0, p>0 に対し,不等式 $(a+b)^p \le c_p(a^p+b^p)$ が成立することを示せ。ただし, c_p は 1 と 2^{p-1} のうちの小さくない方を表すものとする。 ('95 信州大)

- 2

a, b, c が実数のとき

$$\frac{a^2+b^2+c^2}{3} \ge \left(\frac{a+b+c}{3}\right)^2$$
 を証明せよ。

(頻出問題)

4

 $0 \le t \le 1$ を満たす実数 t に対して、xy 平面上の点 A,B を

$$A\left(\frac{2(t^2+t+1)}{3(t+1)}, -2\right)$$
, $B\left(\frac{2}{3}t, -2t\right)$ と定める。

t が $0 \le t \le 1$ を動くとき、直線 AB の通りうる範囲を図示せよ。 ('97 東京大)

5

x の方程式 $\cos 2x + 2k \sin x + k - 4 = 0$ (0° $\leq x \leq 180$ °)

の異なる解の個数が2つであるためのkの満たす条件を求めよ。

('96 関西大)

6

- (1) $0^{\circ} \le \theta < 180^{\circ}$ のとき、x のとりうる値の範囲を求めよ。
- (2) 実数 a に対して、y=a を満たす θ は、 $0^{\circ} \le \theta < 180^{\circ}$ において何個あるか。 ('99 大阪教育大)

7

 $a_i > 0 \ (i=1, 2, 3, \dots, n) \ \mathcal{O} \geq \mathcal{E}$

$$\frac{a_1 + a_2 + a_3 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \times \dots \times a_n}$$

を証明せよ。

8

関数 y=(x-a)(x-b)(x-c) が $x=\alpha$ で極小値 p を、 $x=\beta$ で極大値 q をとるとき

$$\frac{q-p}{(\beta-\alpha)^3}$$
 の値を求めよ。

('00 お茶の水大(改題))

9

すべての正の実数 x, v に対し

 $\sqrt{x} + \sqrt{y} \le k\sqrt{2x+y}$ が成り立つような実数 k の最小値を求めよ。
('95 東京大)

- 10

関数 $f(x)=x^3-2x^2-3x+4$ の,区間 $-\frac{7}{4} \le x \le 3$ での最大値と最 小値を求めよ。 ('91 東京大)

- 11

n が自然数のとき、 $\left(1+\frac{1}{n}\right)^n$ は単調増加であることを示せ。

- 12

$$f(x) = x^4 + x^3 + \frac{1}{2}x^2 + \frac{1}{6}x + \frac{1}{24}$$

$$g(x) = x^5 + x^4 + \frac{1}{2}x^3 + \frac{1}{6}x^2 + \frac{1}{24}x + \frac{1}{120}$$

とする。このとき、以下のことが成り立つことを示せ。

- (1) 任意の実数xに対し、f(x)>0である。
- (2) 方程式 g(x)=0 はただ1つの実数解 α をもち、 $-1<\alpha<0$ となる。 ('94 東京大)

-13-

 $f(x)=x^3+x-1$ とするとき,次の問いに答えよ。

- (1) 方程式 f(x)=0 は、ただ1つの実数解 α をもち、 $0<\alpha<1$ であることを示せ。
- (2) 正の数 β が、 $\beta^4+\beta-1=0$ を満たすならば、 $\alpha<\beta$ であることを示せ。 ('89 京都産業大)

- 14 -

1辺の長さが1の正八面体Vと、1辺の長さが1の正方形の穴があいた平面Pがある。Vをこの平面Pにふれることなく穴を通過させることができるか。結論と理由を述べよ。 ('90 東京大(改題))

-15

0 < x < 1 に対して、 $\frac{1-x^3}{3} > \frac{1-x^2}{2} \sqrt{x}$ が成り立つことを証明せよ。 ('88 京都大)

16

実数 a, b, c が $a \neq 0$, a + b + 2c = 0 を満たすとき, 2 次方程式 $ax^2 + bx + c = 0$ は相異なる 2 つの実数解をもち,そのうち少なくとも 1 つは正であることを示せ。 ('90 岐阜大)

- 17 -

xy 平面上に長さ 2 の線分 PQ があって,点 P は直線 $l: y=\sqrt{3}x$ 上の $y\geq 0$ の部分を動き,点 Q は直線 $m: y=-\sqrt{3}x$ 上の $y\geq 0$ の部分を動く。このとき,線分 PQ の中点Mの軌跡と,直線 l, m とで囲まれる部分の面積を求めよ。 ('01 大阪府立大(改題))

-18-

 \angle XOY $=\alpha^{\circ}$ (ただし α は 180 未満の正の定数) とする。長さl (一定) の線分 PQ があって,点Pは半直線 OX 上を動き,点Qは半直線 OY 上を動く。このとき線分 PQ を s: (1-s) (ただしs は 1 未満の正の定数) に内分する点Rの軌跡と半直線 OX,OY とで囲まれる図形の面積を求めよ。

____19 ___

nが2以上の自然数のとき

$$\left(\frac{n+1}{2}\right)^n > n!$$

を証明せよ。

('70 京都大(改題))

— 20 –

a, b が任意の実定数(ただし a $\pm b$)のとき、 2 次方程式 $3(a-b)x^2+6bx-a-2b=0$ は、 0 \geq 1 の間に少なくとも 1 つの解をもつことを示せ。 ('88 お茶の水大)

21

k は定数でかつ、 α 、 β は $0 < \alpha < \beta < 2\pi$ を満たす定数とする。

- (1) $\sin x + \sin(x + \alpha) + \sin(x + \beta) = k$ が x の恒等式のとき、 α , β , k の値を求めよ。
- (2) $\cos x + \cos(x + \alpha) + \cos(x + \beta) = k$ が x の恒等式のとき, α , β , k の値を求めよ。

-22 -

 $0^{\circ} < \alpha < 180^{\circ}$, $0^{\circ} < \beta < 180^{\circ}$ のとき

連立方程式 $\begin{cases} \sin 2\alpha + \cos \beta = 1 \end{cases}$

 $\cos 2\alpha + \sin \beta = 1$

を解け。 ('00 南山大(改題))

-23 -

Oを原点とする座標空間内に 3 点 A(1, 1, 1), B(2, -1, 2), C(0, 1, 2) がある。点Pが四面体 OABC の辺 BC 上を動くとき, 次の問いに答えよ。

- (1) 内積 $\overrightarrow{OA} \cdot \overrightarrow{OP}$ は 3 であることを示せ。
- (2) ∠AOP の大きさが最小になるときの点Pの座標を求めよ。

('00 広島大)

24

正四面体Tと半径1の球面Sとがあって、Tの6つの辺がすべてSに接しているという。このとき、Tの体積を求めよ。

('82 東京大(改題))

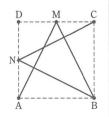
-25-

係数 a, b, c がすべて正の数である 2 次方程式 $ax^2+bx+c=0$ が 実根をもつとき,実根の絶対値は $\frac{b}{a}$ よりも小さく, $\frac{c}{b}$ よりも大き いことを証明せよ。 ('82 早稲田大)

-26 -

OA \perp OB, OB \perp OC, OC \perp OA, OC=a, \angle ACB $=\alpha$ の四面体 OABC において、 \triangle ABC の面積を求めよ。 (創作問題)

図において、ABCD は一辺の長さ 1km の正 方形で、M. N はそれぞれ辺 CD, DA の中点 である。いま、甲、乙は同時刻にそれぞれ A. Bを出発し、同じ一定の速さで歩くものとする。 甲は図の実線で示した道 AMB 上を進み、乙 は実線で示した道 BNC 上を進み、30分後に甲



はBに、乙はCに到着した。甲、乙が最も近づいたのは出発何分後 か。また、そのときの両者の間の距離はいくらか。 ('85 東京大)

平面上に2定点 A(-a, 0), B(a, 0) (a > 0) がある。

動点 P(p, q) (q>0) は $\angle APB = \frac{\pi}{2}$ を満たしながら、この平面上 を動くものとする。このとき、次の問いに答えよ。

- (1) 点Pの軌跡の方程式を求めよ。
- (2) △APB の重心Gの動跡の方程式を求めよ。
- (3) △APB の垂心日の軌跡の方程式を求めよ。

('99 香川医科大(改顯))

px+qy=c, $x \ge 0$, $y \ge 0$ を満たしながら, 点 (x, y) が動くとき, 関数 $f(x, y) = x^2y + \frac{c}{h}xy$ の最大値、 およびそのときの x, y の値 を求めよ。ただし、*b*, *a*, *c* は与えられた正の数である。

('87 香川大)

-30 -

次の連立方程式(*)を考える。

- (1) (x, y, z) = (a, b, c) が (*) の実数解であるとき, $|a| \le 1$, $|b| \le 1$, $|c| \le 1$ であることを示せ。
- (2) (*) は全部で8組の相異なる実数解をもつことを示せ。

('97 京都大)

-31

次の等式を証明せよ。ただし、 n は自然数とする。

(1)
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n}$$

= $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$

(2)
$$(n+1)(n+2) \times \cdots \times (2n) = 2^n \times 1 \times 3 \times \cdots \times (2n-1)$$

(頻出問題)

- 32 -

$$y = \frac{\log x}{x}$$
 の増減表を用いて $\lim_{x \to \infty} \frac{\log x}{x}$ を求めよ。 (創作問題)

-33 -

nは3以上の自然数とするとき,

 $\sqrt[n]{n} > ^{n+1} \sqrt{n+1}$ であることを、数学的帰納法を用いて証明せよ。

実数 p, q に対し $x^3-px+q=0$ の解がすべて実数なら(すなわち 虚数解をもたないなら)、 $x^3-2px^2+p^2x-q^2=0$ の解もすべて実数 であることを示せ。

x>0 において微分可能な関数 f(x) が次の3つの条件(A), (B), (C) を満たしている。

- (A) x > 0 において f''(x) が存在して、f''(x) > 0
- (B) f(1)=1, f'(1)=-2
- (C) n が自然数で、x>0 のとき、点 $\left(\frac{n+1}{n}x, f\left(\frac{n+1}{n}x\right)\right)$ にお ける接線の傾きは、点(x, f(x)) における接線の傾きの $\frac{n}{n+1}$ 倍に等しい。
- (1) n が自然数で、x > 0 のとき、 $f\left(\frac{n+1}{n}x\right)$ を $f\left(\frac{n+1}{n}\right)$ と f(x)を用いて表せ。
- (2), (3) (略)
- (4) f(x) を求めよ。

('92 神戸大)

— 36 —

数列 $\{a_n\}$, $\{b_n\}$ が $a_1=1$, $b_1=1$,

$$\begin{cases} a_{n+1} = a_n - \sqrt{3} b_n \\ b_{n+1} = \sqrt{3} a_n + b_n \end{cases}$$
 (n=1, 2, 3,)

を満たすとき

(1) a2, b2, a3, b3 を求めよ。

(2)
$$\begin{cases} a_{n+3} = -8a_n \\ b_{n+3} = -8b_n \end{cases}$$
 ($n=1, 2, 3, \dots$) を証明せよ。

(3) a_{3k} , b_{3k} ($k=1, 2, 3, \dots$) をそれぞれkの式で表せ。

('00 愛知学院大(改題))

37

xy 平面上に 3 点 $A\left(0, \frac{4}{\sqrt{3}}\right)$, $B\left(-1, \frac{1}{\sqrt{3}}\right)$, $C\left(1, \frac{1}{\sqrt{3}}\right)$ を頂点とする正三角形がある。

辺AC上の点Pに対して、辺AB上にAP=BQとなる点Qをとる。

- (1) (略)
- (2) (略)
- (3) 原点をOとし、線分 PBと線分 QC の交点をR とするとき、 $OR^2 \ o\ (297 \ \ \Box \ E)$ (297 広島大(改題))

-38

c を正の定数として $f(x)=x^3-cx+1$ とする。方程式 f(x)=0 が 3 つの相異なる実数解 α , β , γ ($\gamma<\beta<\alpha$) をもつとき,次の問いに答えよ。

- (1) c のとり得る値の範囲を求めよ。
- (2) $\beta \le x \le \alpha$ の範囲において y = f(x) と x 軸とで囲まれる図形の 面積 S を α を用いずに α と β で表せ。
- (3) $\gamma < -\sqrt[3]{4}$ が成立することを示せ。

('98 大阪女子大)

- 39 -

rを正の定数とする。t>r のとき,点(t,0) から円 $x^2+y^2=r^2$ に引いた2つの接線の接点と円の中心を頂点とする三角形の面積を S(t) とする。また、この三角形をx軸のまわりに回転してできる 立体の体積を V(t) とする。このとき、次の問いに答えよ。

- (1) 接点の座標を t の式で表せ。
- (2) S(t) の最大値と、そのときの t の値を求めよ。
- (3) V(t) の最大値と、そのときの t の値を求めよ。 ('00 新潟大)

 $\vec{a} = (1, 0, 0), \vec{b} = (\cos 60^{\circ}, \sin 60^{\circ}, 0) \ge 10^{\circ}$ 大きさ1のベクトル \vec{c} に対し、 $\cos \alpha = \vec{a} \cdot \vec{c}$ 、 $\cos \beta = \vec{b} \cdot \vec{c}$ と おく。このとき、点 (α, β) $(0^{\circ} \le \alpha \le 180^{\circ}, 0^{\circ} \le \beta \le 180^{\circ})$ の存在範 囲を図示せよ。 ('00 京都大(改顥))

- 41 -

円 $C: x^2+y^2=r^2$ 外の点 P(a, b) から円Cに引いた 2 本の接線の 接点をA、Bとするとき、直線ABの方程式を求めよ。

-42 -

実数 a, b, c に対し $g(x)=ax^2+bx+c$ を考え. u(x) を $u(x) = g(x)g\left(\frac{1}{x}\right)$ で定義する。

- (1) u(x) は $y=x+\frac{1}{x}$ の整式 v(y) として表されることを示せ。
- (2) 上で求めた v(y) は、 $-2 \le y \le 2$ の範囲のすべての y に対して $v(v) \ge 0$ であることを示せ。 ('00 慶応大)

xy 平面上の単位円 C_1 と,条件 -1 < a < $-\frac{1}{2}$ を満たす実数 a に対し,点 R(a,0) を考える。 C_1 上の点 P における C_1 の接線と, R を通りこの接線と直交する直線との交点を Q とする。点 P が C_1 を一周するときに,Q が描く曲線を C_2 とする。 C_2 上の点の x 座標の最小値が -1 より小さいことを示し, C_2 で囲まれる図形の面積を求めよ。

-44

青玉 a 個,赤玉 b 個,白玉 c 個,合計 N=a+b+c 個の玉が入っている袋がある。この袋から無作為に1個の玉を取り出し,色を見て袋にもどす。これをn 回繰り返す。取り出される玉の色の数の期待値を E_n とするとき,

$$E_n = 3 - \left(\frac{a+b}{N}\right)^n - \left(\frac{b+c}{N}\right)^n - \left(\frac{c+a}{N}\right)^n$$
 を示せ。 ('01 京都大)

- 45 -

19⁵⁸+83⁵⁸ を 58 で割った余りを求めよ。

(創作問題)

46

('00 信州大)

p を有理数とし、次の関係をもつ x_n 、 y_n を座標にもつ平面上の点 P_n (n=1, 2, 3, ·····) を考える。

 $x_{n+1} = x_n + p(y_{n+1} + y_n), \quad y_{n+1} = y_n - p(x_{n+1} + x_n)$ いま、 x_1 、 y_1 がともに有理数で、かつ P_1 は原点でないとする。こ のとき、すべての x_n , y_n は有理数であり、点 P_n は原点を中心と する定円上にあることを示せ。 ('81 京都大)

関数 $f(x) = \frac{a \sin x}{\cos x + 2}$ (0 $\leq x \leq \pi$) の最大値が $\sqrt{3}$ となるように aの値を求めよ。 ('01 信州大)

a>0, b>c>0 とし、放物線 v=-a(x+b)(x-c) の第1象限内 にある部分をCとする。C上の点Pからx軸、v軸におろした垂線 とx軸、y軸で囲まれる長方形の面積をSとおく。また、PでのCの接線とx軸、 v軸との交点をそれぞれ Q. Rとする。

- (1) (略)
- (2) Sが最大になるとき、Pは線分 QRの中点であることを示せ。

('01 学習院大)

-50 -

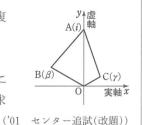
時刻 t における座標が $x=2\cos t+\cos 2t$, $v=\sin 2t$ で表される xy平面上の点Pの運動を考える。

- (1) (略)
- (2) t が $0 \le t < 2\pi$ の範囲を動く間にPが 2 回以上通過する点が唯 1つ存在することを示し、その点を通過する各々の時刻を求めよ。 ('93 東京大(改顥))

- 51 -

点Oを原点とする複素数平面上に,三つの複素数i(虚数単位), β , γ を表す点 A,B,C が \angle COB=120°, \angle BAC=60°,

OB=2OC, AB=AC を満たし、図のように 与えられているとする。このとき β 、 γ を求めよ。



- 52

単位円 $C: x^2+y^2=1$ 上の点Pをとり、定点 A(-2,0) からPへ線分を引き、その線分のPの側の延長線上に点Qを $\overline{AP}\cdot\overline{PQ}=3$ となるようにとる。ただし、 \overline{AP} は線分 AP の長さを表す。

- (1) $s=\overline{\rm AP},\ t=\overline{\rm OQ}$ とおいて、t をs で表せ。ただし、O(0,0) は原点である。
- (2) (略)

('97 京都大)

— 53 -

 α , β , γ は α >0, β >0, γ >0, $\alpha+\beta+\gamma=\pi$ を満たすものとする。 このとき、

 $\sin \alpha \sin \beta \sin \gamma$ の最大値を求めよ。

('99 京都大)

-54 -

nは2以上の自然数とする。

関数 $v=e^x$ …… ①, $v=e^{nx}-1$ …… ②

について,以下の問いに答えよ。

- (1) ① と ② のグラフは第1象限においてただ1つの交点をもつこ とを示せ。
- (2) (1) で得られた交点の座標を (a_n, b_n) としたとき、 $\lim a_n$ と $\lim na_n$ を求めよ。
- (3) (略)

('00 東京工業大)

-55 -

rは r>1 を満たす実数とする。複素数 z が |z|=r を満たすとき、 $z+\frac{1}{z}$ の絶対値の最大値および最小値を求めよ。またそのときのzの値を求めよ。 ('00 滋賀大)

-56 -

等式 $2f(x)+xf'(x)=-8x^2+6x-10$ を満たす整関数 f(x) を求め よ。 ('99 東京薬科大(改顥))

-57 -

xy 平面上に点 A(-1,0), B(1,0), C(0,1) がある。点Pがy軸 上を動くときの AP+BP+CP の最小値と、最小値を与える点P のy座標を求めよ。 ('01 東京女子大)

- 58 -

座標平面上に、点 A(1, 1), B(-1, 1), C(-1, -1), D(1, -1) を頂点とする正方形と、点 P(a, 0), Q(-a, 0) をとる。 a が $0 \le a \le 1$ の範囲を変化するとき、

PQ+AP+DP+BQ+CQ の最小値を求めよ。 ('00 山梨大(改題))

-59-

実数 a, b, c, d が条件

$$a^2+b^2=c^2+d^2=1$$
, $\frac{a}{b}+\frac{d}{c}=0$ を満たすとき

- (1) a^2+c^2 , b^2+d^2 , ab+cd の値を求めよ。
- (2) (略)

('00 岩手大)

60

たて 1.4 m の絵が垂直な壁にかかっていて、絵の下端が目の高さより 1.8 m 上方の位置にある。この絵を、たて方向にみこむ角が最大となる位置は、壁から何 m のところか。 ('82 大阪教育大)

-61 -

係数が実数の 3 次多項式 f(x) に対して g(x)=f(x)+xf'(x) とおく。 方程式 f(x)=0 が 3 つの異なる正の根をもてば, 方程式 g(x)=0 も 3 つの異なる正の根をもつことを証明せよ。

('73 お茶の水大)

62

放物線 $y=x^2$ 上の点 $P(a, a^2)$ (ただし、a>0) においてこの放物線に接し、かつ、x 軸に接する円は 2 個ある。この 2 個の円の中心をそれぞれ $O_1(p, q)$ 、 $O_2(r, s)$ (但し r<p) とする。このとき $\frac{rs}{pq}$ を求めよ。 ('00 立命館大(改題))

- 63

実数 a, $b\left(0 < a < b < \frac{\pi}{2}\right)$ に対し $\tan\frac{a+b}{2} < \frac{1}{2}(\tan a + \tan b)$ が成り立つことを示せ。 ('91 京都大(改題))

- 64 -

a>0 とし、直線 v=2ax を l とする。

点 (-1,0) でx軸に接する放物線 C_1 が,直線 l にも接しているとする。その接点Pの座標は($\boxed{7}$, $\boxed{7}$)であり, C_1 の方程式は

$$y = \frac{x}{(x+1)^2}$$
 $(x+1)^2$ $(x+1)^2$

('98 センター本試(一部略))

- 65 -

正三角形 ABC がある。点Oを直線 AB に関してCと反対側にとって \angle AOB= 60° となるようにし, \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} をそれぞれ \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} で表す。このとき $\overrightarrow{c} = \frac{|\overrightarrow{b}|}{|\overrightarrow{a}|}\overrightarrow{a} + \frac{|\overrightarrow{a}|}{|\overrightarrow{b}|}\overrightarrow{b}$ であることを証

明せよ。

('73 京都大)

- 66 -

2 次曲線 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > 0, b > 0) と xy = k (k > 0) が,第 1 象限 に共有点をもち、その点における2つの曲線の接線が一致するとき、 k およびその共有点の座標 (x_1, y_1) を a, b を用いて表せ。

('01 大阪市立大)

-67 -

実数 x, y について,以下の不等式(1),(2),(3)を証明せよ。 (1), (2) (略)

(3) $\left| \frac{1}{x^2 + 4} - \frac{1}{v^2 + 4} \right| \le \frac{1}{8} |x - y|$ ('97 大阪教育大)

-68 -

 $f(x) = \sin(x^3)$ は周期関数か否かを、理由をつけて答えよ。

('84 京都大(改顥))

四面体 ABCD の辺 AB, BC, CD, DA 上にそれぞれ点 P. Q. R. S が あ り、AP:PB=1:2、BQ:QC=3:4、CR:RD=5:6 と なっている。

4点 P, Q, R, Sが同一平面上にあるとき AS: SD を求めよ。

(灘高定期考査の問題)

 $0 \le x \le 1$ で定義された関数 f(x) = |2x - 1| について

- (1) v = f(f(x)) のグラフをかけ。
- (2) f(f(f(x))) = x となる x の個数を求めよ。 ('83 北海道大)

-71

次の問いに答えよ。

- (1) $x \ge 1$ のとき $x \log x \ge (x-1) \log (x+1)$ を示せ。
- (2) 自然数 n に対して $(n!)^2 \ge n^n$ を示せ。 ('01 名古屋市立大)

— 72 —

 a_1 , b_1 , c_1 , a_2 , b_2 , c_2 は実数で $a_1>0$, $a_2>0$, $b_1^2-a_1c_1<0$, $b_2^2-a_2c_2<0$ とする。このとき,不等式

 $(b_1+b_2)^2-(a_1+a_2)(c_1+c_2)<0$ が成り立つことを示せ。

('94 京都教育大)

- 73 -

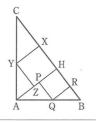
点Oを中心とする半径 1 の球面上に 3 点 A, B, C がある。線分 BC, CA, AB の中点をそれぞれ P, Q, R とする。線分 OP, OQ, OR のうち少なくとも 1 つは長さが $\frac{1}{2}$ 以上であることを証明 せよ。 ('93 京都大)

-74

複素数平面上の原点以外の相異なる 2 点 $P(\alpha)$, $Q(\beta)$ を考える。 $P(\alpha)$, $Q(\beta)$ を通る直線を l ,原点から l に引いた垂線と l の交点を R(w) とする。このとき,「 $w=\alpha\beta$ であるための必要十分条件は, $P(\alpha)$, $Q(\beta)$ が中心 $A\left(\frac{1}{2}\right)$, 半径 $\frac{1}{2}$ の円周上にあることである。」を示せ。 ('00 東京大)

-75 -

直角三角形 ABC で、斜辺 BC 上にHをとり、 $AH \bot BC$ とする。また、三角形 ABH、三角形 AHC に内接する正方形を、それぞれ HPQR、HXYZ とする。このとき、AQ=AY であることを証明せよ。 ($^{'}87$ 愛知教育大)



-76-

すべては0でないn個の実数 a_1 , a_2 , ……, a_n があり, $a_1 \le a_2 \le \dots \le a_n$ かつ $a_1 + a_2 + \dots + a_n = 0$ を満たすとき, $a_1 + 2a_2 + \dots + na_n > 0$ が成り立つことを証明せよ。

('86 京都大)

-77 -

実数 a, b, c が a+b+c>0, bc+ca+ab>0, abc>0 を満足していれば a>0, b>0, c>0 であることを証明せよ。 ('75 お茶の水大)

- 78 -

 $\frac{10^{210}}{10^{10}+3}$ の整数部分のけた数と、1 の位の数字を求めよ。ただし、 3^{21} =10460353203 を用いてよい。 ('89 東京大)

--- 79 --

関数 f(x) の第 2 次導関数は $f''(x) \ge 0$ ($x \ge 0$) を満たすとする。

- (1) (略)
- (2) (略)
- (3) x≥0 に対し, 不等式

$$\int_{0}^{x} \{f(2t) - f(t)\} dt \le \frac{x\{f(2x) - f(x)\}}{2}$$

を証明せよ。

('00 広島市立大)

-80-

座標平面上に 2 点 A(1, 1), B(-2, 4) があり,点 P が放物線 $y=x^2$ (-2 < x < 0)上を動くものとする。 $\angle PAB=\alpha$,

 $\angle PBA = \beta$ とするとき, $\frac{1}{\tan \alpha} + \frac{1}{\tan \beta}$ の最小値を求めよ。

('99 東京学芸大)

— 81 –

- (1) (略)
- (2) $n=1, 2, 3, \dots$ のとき、x の関数 $y=\sum_{k=1}^{2n+1}|x-k|$ の最小値と それを与えるx の値を求めよ。 ('01 北海道大)

 α を 0 でない複素数とし,その偏角 θ は $0^{\circ}<\theta<90^{\circ}$ を満たすものとする。原点を 0 とする複素数平面において α , $\frac{1}{\alpha}$ の表す点をそれぞれ X, Y とする。

- (1) 実数1の表す点をAとする。4点O, X, A, Yの順に結んでできる四角形において、 $\angle A$ を $\angle O$ で表せ。
- (2) 実数 t の表す点をTとする。 α によらず点Tが常に三角形 OXY の外部にあるとき,実数 t はどのような範囲にあるか。

('01 岡山大)

- 83 -

1 枚の硬貨をn回投げ,表が出たときは1 ,裏が出たときには0 を割り当てることで得られる数の列を x_1 、 x_2 , ……, x_n とする。同じ試行により新たに得られる数の列を y_1 、 y_2 , ……, y_n とする。 $z=x_1y_1+x_2y_2+\dots+x_ny_n$ とおくとき,次の問いに答えよ。

- (1) z=m ($0 \le m \le n$) となる確率 $p_n(m)$ を求めよ。(解答略)
- (2) zの値が奇数となる確率 q_n を求めよ。 ('92 上智大(改題))

10進法で表された自然数nの各桁の数字の和をs(n)とする。例えば、n=126 のとき、s(n)=1+2+6=9 である。自然数kとmに対して、s(n)=mとなるk桁の自然数nの個数をS(k,m) で表すことにする。例えば、s(n)=3となる2桁の自然数nは 12、21、30のみであるので、S(2,3)=3となる。

 $m=1, 2, \dots, 9$ のとき,次の問いに答えよ。

- (1) 2以上の任意の自然数 k に対して, $S(k, m) = \sum_{i=1}^{m} S(k-1, i)$ が成立することを示せ。(解答略)
- (2) $n \ge r \ge 1$ を満たす任意の自然数 n, r に対して, 等式 ${}_{n}C_{r} = \sum_{i=1}^{n-r+1} {}_{n-i}C_{n-i-r+1}$ が成立することを示せ。(解答略)
- (3) 2 以上の任意の自然数 k に対して、 $S(k, m) = {}_{k+m-2}C_{m-1}$ が成立することを示せ。 ('01 慶応大)

広中平祐先生からいただいた色紙

aは1より小さい正の定数とする。xy 平面の第1象限に,原点Oからの距離がaの点Pをとる。点Pを中心に半径1の円をえがき,x軸との交点をA,C,y軸との交点をB,Dとする。ただし,点Aのx 座標,点Bのy 座標はともに正とする。

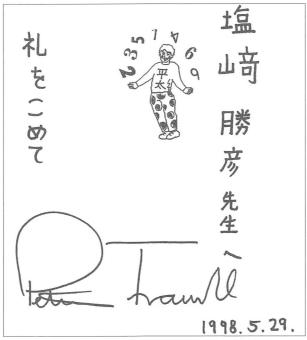
このとき、四角形 ABCD の面積Sの最大値およびSが最大となるときのPの座標を求めよ。 ('97 大阪大(改題))

- 86 -

自然数nについて、 a_n を \sqrt{n} の整数部分とするとき

- (1) 自然数 l について、 $a_n = l$ となる n の個数 e l を用いて表せ。
- (2) t を 2 以上の自然数とするとき, $\sum_{k=1}^{t^2-1} a_k$ を t を用いて表せ。

('97 宮崎大)



ピーター・フランクル先生からいただいた色紙

〔特別寄稿(覆面算)〕の解答

松田 康雄

塩﨑先生の覆面算を電卓で解く方法を書きました。

問題. 次の覆面算を解け。しおざき=か^んれ^き

各文字は $0 \sim 9$ のどれかの数字。0 乗,1 乗および0 の何とか乗は考えない。

解答. 「 $か^{\lambda}$ 」(or「 $れ^{*}$ 」) の最小値は 2^{3} =8 で,「しおざき」の最大値は 9876. $9876 \div 8 = 1234.5$

先ず「 n^* 」(or「 n^{λ} 」)(<1235)の候補を書き出してみる。

 $2^3=8*$, $2^4=16$, $2^5=32*$, $2^6=64$, $2^7=128*$, $2^8=256$, $2^9=512*$;

 $3^2=9$, $3^4=81$, $3^5=243$, $3^6=729$; $4^2=16$, $4^3=64*$, $4^5=1024*$;

 $5^2 = 25**, 5^3 = 125**, 5^4 = 625**; 6^2 = 36, 6^3 = 216*;$

 $7^2=49$, $7^3=343$; $8^2=64$, $8^3=512*$; $9^2=81$, $9^3=729$

このうち、*をつけたものは、「しおざき」の「き」が偶数で、「 n^{*} 」の「き」が奇数となって「 n^{*} 」の候補にならない。

** も「き」を不成立。

次に、「かん」の候補を1の位の数字が小さい順に並び換える。

 $3^4=81$, $9^2=81$; $2^5=32$, $2^9=8^3=512$; $3^5=243$, $7^3=343$;

 $2^6 = 4^3 = 8^2 = 64$, $4^5 = 1024$; $5^2 = 25$, $5^3 = 125$, $5^4 = 625$;

 $2^4 = 4^2 = 16$, $2^8 = 256$, $6^2 = 36$, $6^3 = 216$;

 $2^3 = 8$, $2^7 = 128$; $3^2 = 9$, $3^6 = 9^3 = 729$, $7^2 = 49$

「れき」の候補に対して「かん」を探していく。

 $2^4=16$ のとき。「 $か^{\lambda}$ 」の1の位は4か9。

 $2^6 \times 2^4$ は 2 が ダ ブ る。 $4^3 \times 2^4$ は 4 が ダ ブ る。 $8^2 \times 2^4$ は 2 が ダ ブ る。

 $4^5 \times 2^4$ は 5 桁。 $3^2 \times 2^4$ は 3 桁。 $3^6 \times 2^4$, $9^3 \times 2^4$ は 5 桁。 $7^2 \times 2^4$ は 2 がダブる。

 $2^6 = 64$ のとき。「かん」の1の位は4か9。

 $2^4 \times 2^6$ は 2 が ダ ブ る。 $4^3 \times 2^6 = 4096$ は 4 が ダ ブ る。 $8^2 \times 2^6$ は 2 が ダ ブ る。

 $4^5 \times 2^6$ は 5 桁。 $3^2 \times 2^6$ は 3 桁。 $3^6 \times 2^6$, $9^3 \times 2^6$ は 5 桁。 $7^2 \times 2^6$ は 2 がダブる。

 2^8 =256 のとき。「かん」の1 の位は3 か8。 $3^5 \times 2^8$ 、 $7^3 \times 2^8$ は5 桁。 $2^3 \times 2^8$ 、 $2^7 \times 2^8$ は2 がダブる。

以下, 表にまとめる。

「れ ^き 」「か ^ん 」の1の位		かんれき
$3^2 = 9$	8	$2^3 \times 3^2$, $2^7 \times 3^2$ $(\pm 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \)$ $)$
$3^4 = 81$	4	$2^6 \times 3^4 = 5184 \text{ OK!}, 4^3 \times 3^4 \text{ it } 4 \text{ s} \text{ f} \text{ b}$.
		$8^2 \times 3^4 = 5184$ は8ダブり。 $4^5 \times 3^4$ は5桁。
$3^5 = 243$	5	$5^2 \times 3^5$, $5^3 \times 3^5$, $5^4 \times 3^5$ は5ダブり。
$3^6 = 729$	4	$2^6 \times 3^6$ は 6 ダブり。 $4^3 \times 3^6$ は 3 ダブり。
		$8^2 \times 3^6$ は 5 桁, $4^5 \times 3^6$ は 6 桁。
$4^2 = 16$	2 or 7	$2^5 \times 4^2$, $2^9 \times 4^2$ $1 \pm 2 \ \text{gr} \ \text{J} \ \text{J}$.
		$8^3 \times 4^2 = 8192$ は8 ダブり。
$6^2 = 36$	2 or 7	$2^5 \times 6^2$, $2^9 \times 6^2$ は2ダブり。 $8^3 \times 6^2$ は5桁。
$7^2 = 49$	8	$2^3 \times 7^2$, $2^7 \times 7^2$ $1 \ddagger 2 \not s \not \neg b$.
$7^3 = 343$	1	$3^4 \times 7^3$ は 3 ダブり。 $9^2 \times 7^3$ は 5 桁。
$8^2 = 64$	3 or 8	$3^5 \times 8^2$, $7^3 \times 8^2$ は5桁。
		$2^3 \times 8^2$, $2^7 \times 8^2$ lt $2 \not s \not r b$.
$9^2 = 81$	2	$2^5 \times 9^2$, $2^9 \times 9^2$ は2ダブり。 $8^3 \times 9^2$ は5桁。
$9^3 = 729$	7	なし。

以上より、解は $5184=2^6 \times 3^4$ だけである。

〔特別寄稿(覆面算)〕の解答

長光 實

- 10 print' asave"SioMatu4.ub".ub"
- 20 print" SI O ZA KI = KA^N * RE^KI + DE SU no kotae"
- 30 No=1: for A=1 to 9: for B=1 to 9: if B=A then 160
- 40 for C=1 to 9: if or $\{C=A, C=B\}$ then 160
- 50 for D=1 to 9: if or $\{D=A, D=B, D=C\}$ then 160
- for E=1 to 9: if or $\{E=A, E=B, E=C, E=D\}$ then 160
- 70 for F=1 to 9: if or $\{F=A, F=B, F=C, F=D, F=E\}$ then 160
- 80 for G=1 to 9: if or $\{G=A, G=B, G=C, G=D, G=E, G=F\}$ then 160
- 90 H=D: if or $\{H=E, H=F, H=G\}$ then 160
- 100 for I=1 to 9: if or {I=A, I=B, I=C, I=D, I=E, I=F, I=G} then 160
- 110 for J=1 to 9: if or $\{J=A, J=B, J=C, J=D, J=E, J=F, J=G, J=I\}$ then 160
- 120 $Z=E^F*G^H: if or {Z>9999, Z<1000} then 160$
- 130 Y=1000*A+100*B+10*C+D: X=10*I+J
- 140 if Y=Z+X then print " ; A ; "" ; B ; "" ; C ; "" ; D ; "=" ; else 160
- 150 print E; "^"; F; "*"; G; "^"; H; "+"; I; ""; J, "
 No.=": No: No=No+1
- 160 next: next: next: next: next: next: next: next: next
- 170 end

- SI O ZA KI=KA^N*RE^KI+DE SU no kotae
- 6 5 8 $4 = 1 \hat{7} * 9 \hat{4} + 2 3$ No. = 1
- 7 8 2 $5 = 1^3 * 6^5 + 4$ 9 No. = 2
- 10 print' asave"SioMatu7.ub"
- 20 print" SI O ZA KI = KA^N * RE^KI * DE^SU (SU>N) no kotae(oosakabenmarudasi?)"
- 30 No=1: for Y=123 to 9876
- 40 A = Y \$ 1000 : B = Y \$ 100 : B = B @ 10 : if B = A then 170
- 50 $C=Y \pm 10 : C=C@10 : if or \{C=A, C=B\}$ then 170
- 60 D=Y@10: if or $\{D=A, D=B, D=C\}$ then 170
- 70 for E=0 to 9: if or $\{E=A, E=B, E=C, E=D\}$ then 170
- 80 for F=0 to 9: if or $\{F=A, F=B, F=C, F=E\}$ then 170
- 90 for G=0 to 9: if or $\{G=A, G=B, G=C, G=D, G=E, G=F\}$ then 170
- 100 H=D: if or $\{H=E, H=G\}$ then 170
- 110 for I=0 to 9: if or $\{I=A, I=B, I=C, I=D, I=E, I=F, I=G, I=H\}$ then 170
- 120 for J=F+1 to 9: if or $\{J=A,\ J=B,\ J=C,\ J=E,\ J=G,\ J=I\}$ then 170
- 130 $Z=E^F*G^H*I^J: if or {Z>9999, Z<1000} then 170$
- 140 X = 1000*A + 100*B + 10*C + D
- 150 if X=Z then print " "; A; ""; B; ""; C; ""; D; "="; else 170
- 160 print E; "^"; F; "*"; G; "^"; H; "*"; I; "^"; J; "
 No.="; No: No=No+1
- 170 next: next: next: next: next: next: next
- 180 end

SI O ZA KI=KA^N*RE^KI*DE^SU (SU>N) no kotae (oosakabenmarudasi?)

5 1 8
$$4 = 7 \hat{0} * 3 \hat{4} * 2 \hat{6}$$
 No. = 1

5 1 8
$$4 = 9 \cdot 0 * 3 \cdot 4 * 2 \cdot 6$$
 No. = 2

- 10 print 'asave"a: \\ \text{Birthday.ub}"
- 20 print "Syouwa, Heisei X nen Y Gatu Z Nichi Umarede X, Y, Z Ga Pythagoras Suu" : print
- 30 print " (1) Imakara heihousite yokereba "
- 40 for I=1 to 30: for J=1 to 12: for K=1 to 31
- 50 if $\hat{I}^2+\hat{J}^2=\hat{K}^2$ then print " X=i="; I; " Y=j="; J; " Z=k="; K
- 60 next: next: next: print
- 70 print " (2) Heihousezu deha Siozaki sensei igaiha?"
- 80 for A=1 to 5: for B=1 to 3: for C=1 to 5
- 90 if $A^2+B^2=C^2$ then print " $X=A^2=$ "; A^2 , " $Y=B^2$ ="; B^2 , " $Z=C^2=$ "; $C^2:D=D+1$
- 100 next: next: next
- 110 if D=1 then print "Nasi!": print
- 120 end

Syouwa, Heisei X nen Y Gatu Z Nichi Umarede X, Y, Z Ga Pythagoras Suu

(1) Imakara heihousite yokereba

$$X=i=3$$
 $Y=j=4$ $Z=k=5$

$$X=i=4$$
 $Y=j=3$ $Z=k=5$

$$X=i=5$$
 $Y=j=12$ $Z=k=13$

$$X=i=6$$
 $Y=j=8$ $Z=k=10$

$$X=i=8$$
 $Y=j=6$ $Z=k=10$

$$X=i=9$$
 $Y=j=12$ $Z=k=15$

$$X=i=12$$
 $Y=j=5$ $Z=k=13$

$$X=i=12$$
 $Y=j=9$ $Z=k=15$

$$X=i=15$$
 $Y=j=8$ $Z=k=17$

$$X=i=16$$
 $Y=j=12$ $Z=k=20$

$$X=i=24$$
 $Y=j=7$ $Z=k=25$

$$X=i=24$$
 $Y=j=10$ $Z=k=26$

(2) Heihousezu deha Siozaki sensei igaiha?

$$X=A^2=16$$
 $Y=B^2=9$ $Z=C^2=25$ Nasi!

- 10 print' asave"SioMatul.ub"
- 20 No=1: for A=0 to 9
- 30 for B=0 to 9: if B=A then 120
- 40 for C=0 to 9: if or $\{C=A, C=B\}$ then 120
- 50 for D=0 to 9: if or $\{D=A, D=C\}$ then 120
- 60 $Z=A^B*C^D: if or {Z>9999, Z<1000} then 120$
- 70 $E=Z \pm 1000$: if or $\{E=A, E=B, E=C, E=D\}$ then 120
- 80 H=Z@10: if or $\{H=A, H=B, H=C, H=E, H<>D\}$ then 120.
- 90 F=Z¥100: F=F@10: if or {F=A, F=B, F=C, F=D, F=E} then 120
- 100 $G=Z \times 10 : G=G@10 : if or \{G=A, G=B, G=C, G=D, G=E, G=F\}$ then 120
- 110 print " "; Z; "="; A; "^"; B; "*"; C; "^"; D, "
 No.="; No: No=No+1
- 120 next: next: next: next
- 130 end

$$5184 = 2^6 * 3^4 \text{ No.} = 1$$

$$2187 = 4^0 * 3^7 \text{ No.} = 2$$

$$2187 = 5^0 * 3^7 \text{ No.} = 3$$

$$2187 = 6^{\circ}0 * 3^{\circ}7$$
 No.=4

$$2187 = 9^{\circ}0 * 3^{\circ}7$$
 No. = 5

数楽しましたか?

(ほとんどの問題は何涌りかの解法があるが、筆者が一番気に入った解 法を一通りのみ書いてある。)

- 1 $x^2+x-6=X \ge 3 \le (X+1)(X-1)+1=X^2=(x+3)^2(x-2)^2$ **コメント** 最初からつまらない問題を出していると思われた方が多 -------いだろう。また、 $x^2+x=X$ とおいて解いて大差がないと思う方が多 いのでは?そんな方のために次の問題をプレゼントしよう。 (問題) $(x^2-670x+1999)(x^2-670x+2003)+4$ を因数分解せよ。
- $2 \quad 0 < b \le 1 \quad \emptyset \ge$ $(a+b)^p \le a^p + b^p \quad \cdots \quad \bigcirc$ $p > 1 \text{ or } k \not\cong (a+b)^p \le 2^{p-1}(a^p + b^p) \cdots \bigcirc 2^p$ を示せばよい。
 - (①の証明)

a>0, b>0 でかつ 0 であるから

$$\left(\frac{a}{a+b}\right)^p + \left(\frac{b}{a+b}\right)^p \ge \frac{a}{a+b} + \frac{b}{a+b} = 1$$

よって①は成り立つ。

(②の証明)

a > 0, b > 0 でかつ b > 1 であるから

$$\left(\frac{a+b}{2}\right)^p \leq \frac{a^p + b^p}{2}$$

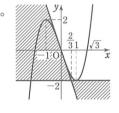
よって ②は成り立つ。

また, A>1 かつ x>0 のとき $y=x^A$ は下に凸である。

3 (証明略)

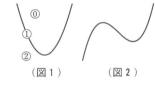
コメント 数学B(Aの誤植ではない!)の教科書参照。この証明 法はかなり以前にふと気付いたが、他の本では見たことがない。(← 筆者の不勉強のため?)

4 直線 AB の方程式は $y=3(t^2-1)x-2t^3$ となる。 この直線は $y=x^3-3x$ の x=t における接線の方 程式である。 $0 \le t \le 1$ であるから,右図の斜線部 分のようになる。但し,境界線上の点を含む。



コメント 直線 AB の正体に気付いたとき,カ ンゲキ。

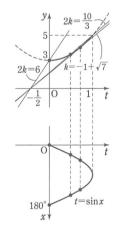
授業で次のような「パズル」を板書する。「右の(図1)は放物線、(図2)は 3次 関数のグラフである。(図1)の数字は何を意味するかを考えて、(図2)に数字を書きこめ。自信のある者は、4次関数のグラフについてもやってみよ。」



5 $\sin x = t$ とおくと, $k(2t+1) = 2t^2 + 3$ (判別式) = 0 から $k = -1 \pm \sqrt{7}$ $k = -1 + \sqrt{7}$ のとき $t = \frac{-1 + \sqrt{7}}{2}$

よって、グラフから $k = -1 + \sqrt{7}$, $\frac{5}{3} < k \le 3$

コメント この解法は「視覚に訴える」という 意味で慣れれば非常に簡単である。このような解 法で解ける問題が結構ある。



6 (1)
$$x=2\cos(\theta+30^\circ)$$
, $0^\circ \le \theta < 180^\circ$ から $-2 \le x \le \sqrt{3}$

(2)
$$v = x^3 - 3x = 8\cos^3(\theta + 30^\circ) - 6\cos(\theta + 30^\circ)$$

$$=2\cos(3\theta+90^{\circ})=-2\sin 3\theta$$

よって a<-2, a>2 のとき 0 個; a=2 のとき 1 個; a=-2, 0 < a < 2 のとき 2 個; a = 0 のとき 3 個; -2 < a < 0 のとき 4 個 コメント (1) 合成の公式は余弦でも表せることを知らない生徒が

多い。なお、

 $x=\sqrt{3}\cos\theta-\sin\theta=(\sqrt{3},-1)\cdot(\cos\theta,\sin\theta)$ と見れば、 $x=2\cos(\theta+30^\circ)$ は自然に出てくる。問題は(2)である。筆者は授業 で $v=x^3-3x$, $x=2\cos(\theta+30^\circ)$ のグラフを 5 と同様の方法でかい て生徒に説明した。授業が終わったあとで一人の生徒がもってきた解 答が上の解答であった。頭を「ガツン」と殴られた感じであった。生 徒は素晴らしい。早速その日の夜、昔のファイルを引っぱり出して見 てみると、筆者も上の解答をしているではないか。予習の段階でそこ まで見なかったのが悔やまれる。

7 (証明) a_1, a_2, \dots, a_n の相加平均を A_n , 相乗平均を G_n とする。 $1 = e^{0} = e^{\frac{e^{\frac{e^{n}}{A_{n}}} - 1}{e^{n}}} \ge \prod_{i=1}^{n} \frac{a_{i}}{A_{n}} = \frac{G_{n}^{n}}{A_{n}^{n}}$

$$A_n \cong G_n A_n \cong G_n$$

コメント 筆者が40才の頃だったと思う。ある講演会で教えてもら った証明法である。こんな鮮やかな証明法があるとは……。強烈な印 象を受けた。教科書の例題によくでてくる「 $x \in \mathbf{R} \Longrightarrow e^x \ge x+1$ 」 を使っているだけではないか。 $\prod\limits_{i=1}^{n}$ の記号を使わずにかいたら高校生 でもすぐに理解できると思う。

8 v=f(x) とおくと $f'(x)=3(x-\alpha)(x-\beta)$

$$\therefore \quad q - p = f(\beta) - f(\alpha) = -\frac{3}{6}(\beta - \alpha)^3$$

$$\therefore \quad \frac{q-p}{(\beta-\alpha)^3} = -\frac{1}{2}$$

コメント 3次関数の極大値と極小値の差に関する問題はよく出題 される。

こんな分野で $\int_{\alpha}^{\beta} a(x-\alpha)(x-\beta) dx = -\frac{a}{6}(\beta-\alpha)^3$ の公式が使える ことに気付いたのはかなり以前である。最近、他の本でもときどき見 かけるようになった。

9 すべての正の数 x, y について $\left(\frac{1}{2}+1\right)(2x+y) \ge (\sqrt{x}+\sqrt{y})^2$ すなわち, $\frac{\sqrt{6}}{2}\sqrt{2x+y} \ge \sqrt{x} + \sqrt{y}$ が成り立ち, y=4x のとき等 号が成り立つ。

よって、kの最小値は $\frac{\sqrt{6}}{2}$ である。

コメント シュワルツの不等式に気付けば一番「素直」な解答と思

10
$$f'(x) = 0$$
 の解は $x = \frac{2 \pm \sqrt{13}}{3}$ $a = \frac{2 - \sqrt{13}}{3}$, $\beta = \frac{2 + \sqrt{13}}{3}$ とおく。 $2\alpha + \gamma = 2$ とすると $\gamma = \frac{2 + 2\sqrt{13}}{3} > 3$ よって,最大値は $f(\alpha) = \cdots = \frac{38 + 26\sqrt{13}}{27}$ $2\beta + \delta = 2$ とすると $\delta = \frac{2 - 2\sqrt{13}}{3} > -\frac{7}{4}$ よって,最小値は $f\left(-\frac{7}{4}\right) = -\frac{143}{64}$

コメント 東大好み(?)の計算の煩雑な問題。

その煩雑な計算をいかに手を抜くかと考えてx座標に着目した。

11 (証明) $1+\frac{1}{n}$ が n 個と 1 が 1 個, あわせて (n+1) 個の数で (相加平均)≧(相乗平均)を用いると

$$\frac{\left(1+\frac{1}{n}\right)+\left(1+\frac{1}{n}\right)+\dots+\left(1+\frac{1}{n}\right)+1}{n+1} > {n+1} \sqrt{\left(1+\frac{1}{n}\right)^n} \times 1$$
(等号は成り立たない!)

$$\therefore 1 + \frac{1}{n+1} > {n+1 \choose 1} \left(1 + \frac{1}{n}\right)^n$$

$$\therefore \left(1 + \frac{1}{n+1}\right)^{n+1} > \left(1 + \frac{1}{n}\right)^n$$

よって,成り立つ。

コメント この証明法は生徒から教わった。これを知るまで、筆者は「オーソドックス」な証明法しか知らなかった。生徒の頭は柔軟だ。

12 (証明) (1)
$$f(x) = \left(x^2 + \frac{1}{2}x\right)^2 + \frac{1}{4}\left(x + \frac{1}{3}\right)^2 + \frac{1}{72} > 0$$

よって、成り立つ。

(2)
$$g'(x) = 5x^4 + 4x^3 + \frac{3}{2}x^2 + \frac{1}{3}x + \frac{1}{24}$$

= $5\left(x^2 + \frac{2}{5}x\right)^2 + \frac{7}{10}\left(x + \frac{5}{21}\right)^2 + \frac{1}{504} > 0$

g(-1) < 0, g(0) > 0よって、成り立つ。

コメント 本問には背景がある (e^x のマクローリン展開)。しかし、係数を見て背景に気付いた者はかえって面倒であったことと思う。上のような解法に気付けば簡単な計算のみでオワリ。

13 (証明) 同一座標平面上に $y=x^3$, $y=x^4$, y=1-x のグラフをかけば(1), (2) ともに自明である。

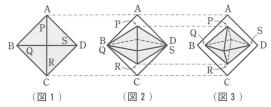
コメント この証明法は気付けば簡単であるが、気付くまで、かなりの時間を要した記憶がある。なおこの問題の類題として次の問題をあげておこう。

n を 1 より大きい自然数とするとき、方程式 $x^n+x-1=0$ について次のことを証明せよ。

- (1) (共通問題) この方程式は0と1との間にただ1つの実根をもつ。
- (2) (理学部) 上の根はnが増すにつれて大きくなる。
- (3) (家政学部) n=4, n=5 の場合,上の実根をそれぞれ a, b とするとき a < b である。 ('79 お茶の水大)
- (注) 昔は方程式の「解」のことを「根」(コン)と呼んでいた。

14 (結論) 通過させることができる。

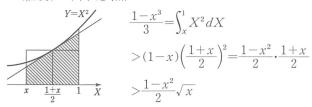
(理由) 正方形の穴のカドを A, B, C, D とし, 正八面体の頂点の うち同一平面上にある 4つの頂点の 1 組を P, Q, R, S とする。 (下図参照)



まず、PとA、QとB、RとC、SとDを一致させる(図1)。BDを回転軸として、正方形 PQRS を θ (0°< θ <90°) 回転させたのが(図2)である。(図2)において AC を回転軸として正方形 PQRSをわずかに回転させると(図3)となる。よって、成り立つ。

|コメント| この解答なら小学生でも理解できると思う。

15 (証明) (下図参照)



コメント 某予備校の解答速報作製の場で気付いた解法である。

 $\frac{1-x^3}{2} = \int_{-x}^{1} X^2 dX$ は瞬時に気付いたが $\frac{1-x^2}{2} \sqrt{x}$ が何を意味するかわ からなかった。横では予備校の教員がゴリゴリ計算している。何とか 手抜きはできないかと考えること4~5分。やっと上の解法に気付く。 等式と違って不等式では間に入るものが気付きにくいという難しさが ある。

筆者はいろいろな問題で、いろいろ別解を考えてきたが、上の解法 は一番気に入っている。

その訳は、計算が非常に簡単ということもあるが、特筆すべきは、 この解法を利用するといろいろな問題が作れるということである。 (一例) x > 1 のとき $e^{x} - e > (x - 1)e^{\sqrt{x}}$ を証明せよ。 出題者もこの解法から問題を作ったのではなかろうか?

- **16** (証明) $f(x) = ax^2 + bx + c$ とおくと f(0)+f(1)=a+b+2c=0 よって、成り立つ。 コメント $\lceil a+b+2c \rangle$ が何を意味しているか」と考えて上の解答 にたどりついた。
- 17 OP の中点をRとし、半直線 MR 上に MR=RS となる点Sをとる と点Sの軌跡は扇形の弧の部分となる。点Sの軌跡と、半直線 $v = \sqrt{3}x \ (v \ge 0), \ v = -\sqrt{3}x \ (v \le 0)$ とで囲まれる面積は $\pi \times 1^2 \times \frac{120}{260} = \frac{\pi}{2}$ である。よって、求める面積も $\frac{\pi}{2}$ となる。

|コメント| 本問に関連したことを,以前,卒業生から聞いて,10年 程前の(「に」の誤植ではない)本を見ていたので、上のような解法 ができた。この解法ならば、非常に簡単な計算であり、しかも(1)と は単独に解ける。原題では「(1) 線分 PQ の中点 M の軌跡を表す方 程式を求めよ。」が入っていた。上の解法では「よって、求める面積 も…」の部分でカバリエリの定理を用いている。

18 (答のみ記しておく)
$$\frac{\pi(180-\alpha)}{360}s(1-s)l^2$$

コメント 前出 17 の問題を一般化してもできるかと思ってやって みるとうまくいったので、発表することにした。17 と同様の方法で 解ける。角度は弧度法にした方が答がキレイになるが、数IIIの知識を まったく必要としないことを強調するために60分法にした。解法がわからなければ、逆に答から考えてもよいのでは?

19 (証明)
$$\frac{1+2+3+\dots+n}{n} > \sqrt[n]{1\times2\times3\times\dots\times n}$$
 から
$$\frac{1}{n} \times \frac{1}{2} n(n+1) > \sqrt[n]{n!}$$
 ∴
$$\left(\frac{n+1}{2}\right)^n > n!$$

コメント 原題では「数学的帰納法を用いて…」となっている。解法を指定するのは ①受験生に対する親切心 ②採点をラクにするいずれかの理由だと思うが、本来は数学は自由な発想による解法が望ましいと思う。本間では数学的帰納法を用いると n が「各地」にあらわれて大変である。

20 (証明)
$$\int_0^1 \{3(a-b)x^2 + 6bx - a - 2b\} dx$$
$$= \left[(a-b)x^3 + 3bx^2 - (a+2b)x \right]_0^1 = 0$$
よって、成り立つ。

コメント 何通りかの解答を用意して授業に臨んだあと、ある生徒から「他に別解はありませんか?」と聞かれて気付いた。その後、上のような解法で解ける問題が数題出題されている。

(注) 本間では a=b であっても、(すなわち 2 次方程式でなくても) 結論は成り立っている。

21 3点 $(\cos x, \sin x)$, $(\cos(x+\alpha), \sin(x+\alpha))$, $(\cos(x+\beta), \sin(x+\beta))$ は原点を中心とする半径1の円周上の点で

ある。

$$(1) \iff \frac{1}{3} \{ \sin x + \sin(x + a) + \sin(x + \beta) \} = \frac{k}{3}$$
 であるから、
上の 3 点の重心の Y 座標が x に関係なく一定となる。よって、 $k=0$ かつ

$$\alpha = \frac{2}{3}\pi$$
, $\beta = \frac{4}{3}\pi$ となる((2)も同様)。

コメント 計算のみでせまると大変である。三角形の重心と関係していることに注目!

なお、74 京都大で次のような類題が出題されている。

$$0 \le \alpha < \beta < \gamma < 2\pi$$
 であって

$$\cos \alpha + \cos \beta + \cos \gamma = 0$$
, $\sin \alpha + \sin \beta + \sin \gamma = 0$

であるという。 $\beta - \alpha$ と $\gamma - \beta$ の値を求めよ。

22 90° $-\beta = \theta$ とおくと(自信があれば置き換える必要なし)

$$0^{\circ} < 2\alpha < 360^{\circ}, -90^{\circ} < \theta < 90^{\circ},$$

$$\frac{\sin 2\alpha + \sin \theta}{2} = \frac{1}{2}, \quad \frac{\cos 2\alpha + \cos \theta}{2} = \frac{1}{2}$$

よって、右図から
$$\theta=0^{\circ}$$
、 $2\alpha=90^{\circ}$

$$\alpha = 45^{\circ}, \beta = 90^{\circ}$$

中点!

一般に

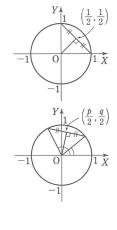
$$\begin{cases} \cos x + \cos y = p \end{cases}$$

$$\sin x + \sin y = q$$

の形の連立方程式は同様に解ける。

また、解の存在条件は
$$\left(\frac{p}{2}\right)^2 + \left(\frac{q}{2}\right)^2 \le 1$$
 すなわち $p^2 + q^2 \le 4$ である。

23
$$\overrightarrow{AO} = (-1, -1, -1), \overrightarrow{AB} = (1, -2, 1), \overrightarrow{AC} = (-1, 0, 1)$$
 であるから $AO \perp AB$, $AO \perp AC$



よって AP⊥OA

- (1) $\overrightarrow{OA} \cdot \overrightarrow{OP} = OA^2 = 3$
- (2) $\angle AOP = \theta$ とおくと

$$\cos \theta = \frac{OA}{OP}$$

 θ :最小 \iff $\cos \theta$:最大 \iff OP:最小

⇔ OP⊥BC ⇔ AP⊥BC

よって $\angle BAC = 90^{\circ}$ から $BP: PC = AB^2: AC^2 \cdots (*)$

$$=3:1$$

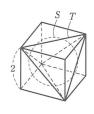
したがって $P\left(\frac{1}{2}, \frac{1}{2}, 2\right)$ となる。

コメント 上の解答は生徒の解答である。筆者は、OA LBC (のみ) に気付いて、そのことを利用して解説したが、生徒の解答の方が上手であった。なお(*)の比例式は(証明は非常に簡単であるが)あまり知られていないように思う。京都大で過去(たしか2年連続だったと思う)にこの比例式を使う問題が出題されている。

24
$$2^3 - \frac{1}{2} \times 2^2 \times 2 \times \frac{1}{3} \times 4 = \frac{8}{3}$$

コメント (右図参照)

まだ無理数を知らない中一の生徒に模型を作らせて 解かせた。ほとんどの生徒が時間内に解けて大喜び。 ある中一生曰く、「東大の問題は易しいネ!」

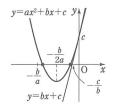


25 (証明) 右図より明らか。

コメント 言われれば何でもないことであるが、y=ax²+bx+c y

$$\lceil y = ax^n + bx^{n-1} + \dots + px + q \pmod{n \in \mathbb{N}}$$

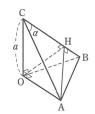
の x=0 における接線は y=px+q である」は他 の本では見かけない(\iff 筆者の不勉強のため?)。



26 Aから辺 BC に下した垂線の足をHとすると $OH \perp BC$ となる。

$$\therefore AC\cos \alpha \times BC = CH \times BC$$
$$= a^2$$

$$\therefore \triangle ABC = \frac{1}{2} AC \times BC \sin \alpha$$
$$= \frac{1}{2} \times \frac{a^2}{\cos \alpha} \sin \alpha = \frac{1}{2} a^2 \tan \alpha$$



コメント 今年の入試問題を一般化してもうまく行ったので載せることにした。最初、余弦定理と三平方の定理を用いて導いたが、ある日、通勤途中、(学校まで徒歩でアト数分というときに)問題をふと思い出し、上の解答が頭にヒラメいた。こんな公式(?)は筆者は知らなかった。

27 正方形 ABCD の中心をOとする。 t 分後の甲,乙の位置をそれぞれ P,Q とする。図形の対称性からPが AM 上のときのみを考える。 $\triangle POQ$ は直角二等辺三角形であるから

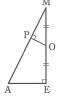
PQ:最小 ⇔ OP:最小

⇔ OP⊥AM

よって MP:OM=ME:AM

$$MP : \frac{1}{2} = 1 : \frac{\sqrt{5}}{2}$$

$$MP = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{2} \times \frac{2}{5} = \frac{2}{5} AM$$



AM 間 15 分より MP 間 6 分

よって、出発後 15-6=9 (分) と 30-9=21 (分) であり、そのとき の距離は $\sqrt{2}$ OP= $\sqrt{2}$ × $\frac{1}{2}$ MP= $\frac{\sqrt{10}}{10}$ (km) となる。

コメント 図形的にとらえることができると簡単で、計算もラクである。

28 (1) \angle APB= $\frac{\pi}{3}$ (一定) より点Pは円弧を描く。 \triangle APB の外心を O_1 とすると, \angle A O_1 B= $\frac{2}{3}$ π よって、点Pの軌跡の方程式は

円弧
$$x^2 + \left(y - \frac{\sqrt{3}}{3}a\right)^2 = \frac{4}{3}a^2 (y > 0)$$
 となる。

(2) 原点をOとし、OO₁ を 1:2 に内分する点を O₂ とすると O₂ $\left(0, \frac{\sqrt{3}}{\alpha} a\right)$ となる。

OO₂: O₂O₁=1:2, OG: GP=1:2
$$\sharp$$
 \flat O₂G= $\frac{1}{3}$ O₁P= $\frac{2}{9}\sqrt{3}$ a

円弧
$$x^2 + \left(y - \frac{\sqrt{3}}{9}a\right)^2 = \frac{4}{27}a^2 \ (y > 0)$$

となる。

(3)
$$O_3\Big(0, -\frac{\sqrt{3}}{3}a\Big)$$
 とすると $O_1O_2: O_2O_3=1:2$

O₁G:GH=1:2 であるから

$$O_3H = 3O_2G = \frac{2}{3}\sqrt{3} a$$

よって, 点日の軌跡は

$$x^{2} + \left(y + \frac{\sqrt{3}}{3}a\right)^{2} = \frac{4}{3}a^{2}\left(y > -\frac{2}{3}\sqrt{3}a\right)$$

となる。

コメントすべて図形的に処理できる。

(3) ではオイラーの定理を用いている。

29
$$px=X$$
, $qy=Y$ とおくと $X \ge 0$, $Y \ge 0$
 $z \ge x^2y + \frac{c}{b}xy = \frac{1}{b^2a}X(X+c)Y$ …… ①

$$=2cX+2cY=2c(X+Y)=2c^{2}$$

一方,
$$2X^2+(X+c)Y+(X+c)Y$$

$$\geq 3\sqrt[3]{2X^2(X+c)^2Y^2}$$

$$\therefore 2c^2 \ge 3\sqrt[3]{2\{X(X+c)Y\}^2}$$

等号は
$$2X^2=(X+c)Y$$
 かつ $X+Y=c$

すなわち $x=\frac{c}{\sqrt{3}p}$, $y=\frac{\sqrt{3}-1}{\sqrt{3}q}c$ のとき成り立つ。

よって、①から最大値は $\frac{2\sqrt{3}c^3}{9p^2q}$ となる。

コメント 一時期 (相加平均) ≥ (相乗平均) に凝っていたことがある。そのとき本問もひょっとして出来ないかと思って考えたところ,何とか解決した。チト悪乗りか?

- 30 (証明) (1) |a|>1 とすると $|b|-|a|=2a^2-1-|a|=(2|a|+1)(|a|-1)>0$ $\therefore |b|>|a|>1$ 同様にして |c|>|b|, |a|>|c| よって,矛盾する。 したがって $|a|\le 1, |b|\le 1, |c|\le 1$ となる。
 - (2) (1) から $x=\cos\theta$ ($0 \le \theta \le \pi$) とおける。 このとき $y=\cos 2\theta$, $z=\cos 4\theta$ より $\cos\theta=\cos 8\theta$ $-2\sin\frac{9}{2}\theta\sin\frac{7}{2}\theta=0$

コメント (2) 連立方程式と(1)から、余弦の2倍角の公式に気付けば簡単!

31 (証明) (1)
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n}$$

$$= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2n-1} + \frac{1}{2n} - 2\left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2n}\right)$$

$$= \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$
よって、成り立つ。

(2)
$$(n+1)(n+2) \times \cdots \times (2n)$$

$$= \frac{(2n)!}{n!} = \frac{2 \times 4 \times \cdots \times 2n \times 1 \times 3 \times \cdots \times (2n-1)}{n!}$$

$$= 2^{n} \times 1 \times 3 \times \cdots \times (2n-1)$$
よって、成り立つ。

コメント (1), (2) いずれも数学的帰納法の練習問題としていろいろな参考書にでている。数学の学力が中以下の生徒にとっては数学的帰納法の第1段階からわかりにくいらしい。上の証明法なら理解しやすいと思うがどうだろうか。

32 $y = \frac{\log x}{x}$ (導関数、増減表は略)は x = e で極大かつ最大となり、最大値は $\frac{1}{e}$ となる。

 $\lim_{x\to\infty} \frac{\log x}{x}$ を求めるのであるから x>e としてよい。

$$x=t^2$$
 $(t>\sqrt{e})$ とおくと

$$0 < \frac{\log x}{x} = \frac{\log t^2}{t^2} = \frac{2}{t} \times \frac{\log t}{t} \le \frac{2}{t} \times \frac{1}{e}$$

 $x \to \infty$ のとき, $t \to \infty$ であるからハサミウチにより

$$\lim_{x \to \infty} \frac{\log x}{x} = 0$$

となる。

コメント 大分以前にふと気付いた。

33 (証明) $\sqrt[n]{n} > n+1\sqrt{n+1} \iff n > \left(\frac{n+1}{n}\right)^n \cdots (*)$

(*)が成り立つことを示す。

(I)
$$n=3 \text{ obs} \left(\frac{4}{3}\right)^3 = \frac{64}{27} < 3$$

よって、成り立つ。

(II)
$$n=k$$
 (≥ 3) のとき $k>\left(\frac{k+1}{k}\right)^k$ が成り立つとする。

両辺に
$$\frac{k+1}{k}$$
 をかけると $k+1>\left(\frac{k+1}{k}\right)^{k+1}>\left(\frac{k+2}{k+1}\right)^{k+1}$

よって n=k のとき成り立つとすると n=k+1 のときも成り立つ。 (I), (II) より与えられた命題は 3 以上のすべての自然数 n について成り立つ。

 $\boxed{ コメント } n=k$ のときから n=k+1 のときを示す方法が面白い。

(注) 本間は32 を利用すると自明であるが、数 IIIを利用しなくても(文系の者でも)できるということを示すために入れた。

34 (証明) $x^3 - px + q = 0$ の実数解を $x = \alpha$, β , γ とすると $\alpha + \beta + \gamma = 0$, $\alpha\beta + \beta\gamma + \gamma\alpha = -p$, $\alpha\beta\gamma = -q$ \therefore $\alpha^2 + \beta^2 + \gamma^2 = 2p$, $\alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 = p^2$, $\alpha^2\beta^2\gamma^2 = q^2$ よって、成り立つ。

コメント 微分法を用いると大変。

コメント 原題では

「(2) n が自然数で、 $x_0>0$ のとき、点(x_0 , $f(x_0)$)における接線と点 $\left(\frac{n+1}{n}x_0, f\left(\frac{n+1}{n}x_0\right)\right)$ における接線との交点のx 座標を x_1 とし

て, $f'(x_0)x_1$ を n と $f\left(\frac{n+1}{n}\right)$ を用いて表せ。

(3)
$$n \to \infty$$
 のとき、 $n\left\{f\left(\frac{n+1}{n}\right)-1\right\}$ の極限値を求めよ。」

の誘導が入っていたが, (2), (3)を示すのが少し面倒な上, (2), (3)を 用いないで上のように(4)を示した方がズッとラクだ。

36 (1)
$$a_2=1-\sqrt{3}$$
, $b_2=1+\sqrt{3}$, $a_3=-2(1+\sqrt{3})$, $b_3=-2(1-\sqrt{3})$

(2)
$$z_n = a_n + i b_n$$
 とおくと $z_{n+1} = (1 + \sqrt{3} i) z_n$ となるから $z_{n+1} = 2(\cos 60^\circ + i \sin 60^\circ) z_n$

$$\therefore z_{n+3} = -8z_n \cdots 1$$

$$a_{n+3} = -8a_n, b_{n+1} = -8b_n$$

(3) ① $\hbar \cdot \delta$ $z_{3(k+1)} = -8z_{3k}$

$$\therefore z_{3k} = (-8)^{k-1} z_3 = (-8)^{k-1} \{ -2(1+\sqrt{3}) - 2(1-\sqrt{3})i \}$$

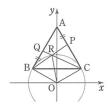
$$\therefore a_{3k} = -2(1+\sqrt{3})(-8)^{k-1}, b_{3k} = -2(1-\sqrt{3})(-8)^{k-1}$$

コメント 原題では

- 「(1) a2, b2, a3, b3, a4, b4 を求めよ。
- ((2) は同じ)
- (3) $c_k = a_{3k}$ ($k = 1, 2, 3, \dots$) とおくとき、数列 $\{c_k\}$ の一般項 c_k を k の式で表せ。」

となっていた。上の解法では a_{3k} , b_{3k} が同時に求まる。それどころか一般に a_{n} , b_{n} も求められる。

37 (3)
$$\angle$$
BRC=120° となるから
$$\frac{1}{2}\angle$$
BOC+ \angle BRC=60°+120°=180° よって、B、R、C はOを中心とする円周上にある。



したがって
$$OR^2 = OB^2 = \frac{4}{3}$$

コメント 原題では

- 「(1) 点Pのx座標をaとして、直線PB および直線QC の方程式を求めよ。
- (2) 線分 PB と線分 QC の交点 R の座標を求めよ。
- (3) 原点をOとするとき、 OR^2 の値を求めよ。」となっている。

原題では(1), (2)の計算が面倒。

しかも (2) の答が
$$\left(\frac{2a-1}{a^2-a+1}, \frac{-2a^2+2a+1}{\sqrt{3}(a^2-a+1)}\right)$$
 となる。これでは (3)

はますます面倒。そこで考えたのが前ページの解答である。

38 (1) $x^3+1=cx$ とし、 $y=x^3+1$ 、y=cx が接する点のx座標をx=p とおくと

$$\frac{p^3+1}{p} = 3p^2 = c \qquad \ \ \, \text{よって} \quad p = \frac{1}{\sqrt[3]{2}} \text{ から } c = \frac{3}{\sqrt[3]{4}} = \frac{3\sqrt[3]{2}}{2}$$

よって、求めるcの範囲は $c > \frac{3\sqrt[3]{2}}{2}$ となる。

(2) $\alpha + \beta + \gamma = 0$, $\alpha \beta + \beta \gamma + \gamma \alpha = -c$ by $c = -\alpha \beta - \gamma(\alpha + \beta) = \alpha^2 + \alpha \beta + \beta^2$

求める面積をSとおくと

$$S = -\int_{\beta}^{\alpha} (x^3 - cx + 1) dx = -\left[\frac{1}{4}x^4 - \frac{1}{2}cx^2 + x\right]_{\beta}^{\alpha}$$

$$= \cdots = \frac{1}{4}(\alpha - \beta)\{-(\alpha^3 + \alpha^2\beta + \alpha\beta^2 + \beta^3) + 2c(\alpha + \beta) - 4\}$$

$$= \cdots$$

$$= \frac{1}{4}(\alpha - \beta)\{(\alpha + \beta)^3 - 4\}$$

(3) (証明) $\alpha+\beta=-\gamma$ であるから $S=\frac{1}{4}(\alpha-\beta)(-\gamma^3-4)$ S>0, $\alpha>\beta$ から $\gamma<-\sqrt[3]{4}$

コメント 少なくとも筆者と話した人,筆者が見た本では(2)が(3)の誘導となっていることに気付いていない。こんな粋な誘導は強烈に印象に残る。

[教訓] 人間は素直になれ!

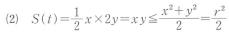
39 (1) 右図のように接点を P(x, y), Q とすると

$$x t = r^2 \qquad \therefore \quad x = \frac{r^2}{t}$$

よって y>0 から

$$y = \sqrt{r^2 - x^2} = \frac{r}{t} \sqrt{t^2 - r^2}$$

したがって、接点は $\left(\frac{r^2}{t}, \pm \frac{r}{t}\sqrt{t^2-r^2}\right)$ となる。



$$x=y=\frac{r}{\sqrt{2}}$$
 のとき等号が成り立つから

最大値は $\frac{r^2}{2}$ で、このとき $t=\frac{r^2}{x}=\sqrt{2}r$ となる。

(3)
$$V(t) = \frac{1}{3} \pi x y^2$$

$$2x^2 + y^2 + y^2 \ge 3\sqrt[3]{2x^2y^4}$$

$$2x^2 = y^2$$
 かつ $x^2 + y^2 = r^2$ のとき すなわち $x = \frac{r}{\sqrt{3}}$, $y = \frac{\sqrt{2}}{\sqrt{3}}r$ のとき等号が成り立つ。

よって、最大値は
$$\frac{1}{3}\pi \times \frac{2}{3\sqrt{3}}r^3 = \frac{2}{27}\sqrt{3}\pi r^3$$
 で、 $t = \frac{r^2}{x} = \sqrt{3}r$ と

なる。

コメント 本問は38と対照的で、誘導に乗ると大変である。出題者の思い込みだったと思うが、いかがだろうか。

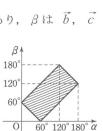
[教訓] 臨機応変!

40 与えられた条件から、 α は \vec{a} , \vec{c} のなす角であり、 β は \vec{b} , \vec{c} のなす角である。よって、「三角」不等式

$$\alpha + \beta \ge 60^{\circ}$$
, $\alpha + 60^{\circ} \ge \beta$, $\beta + 60^{\circ} \ge \alpha$,

$$\alpha + \beta + 60^{\circ} \le 360^{\circ}$$

したがって、点 (α, β) の存在範囲は右図の斜線



部分である。

但し、境界線上の点を含む。

コメント 原題では $\cos^2 \alpha - \cos \alpha \cos \beta + \cos^2 \beta \le \frac{3}{4}$

を証明させた上で (α, β) の範囲を要求していたが、それはまったく不要。なお、次の定理(というよりもほとんど自明であるが…)は他の本では見かけたことがない。知っていると意外と便利である。

- 定理 -

 α , β , γ が四面体の 1 つの頂点のまわりの 3 つの角であるための必要十分条件は、

 $\alpha+\beta>\gamma$, $\beta+\gamma>\alpha$, $\gamma+\alpha>\beta$, $\alpha+\beta+\gamma<360^{\circ}$ となることである。

これこそ「三角」不等式と名付けたいと思う。念のため、補足すると $\alpha>0^\circ$ 、 $\beta>0^\circ$ 、 $\gamma>0^\circ$ は不要である。

世間一般の三角不等式でも

a, b, c が三角形の三辺 $\iff a+b>c$, b+c>a, c+a>b

でよい。a>0, b>0, c>0 は不要である。

41 直線 AB上の任意の点を Q(x, y) とし、線分 AB と OP の交点を Hとおく。

 $\overrightarrow{OP} \cdot \overrightarrow{OQ} = OP \times OH = OA^2$ \therefore $ax + by = r^2$

コメント この求め方は以前,ある先生から教わった。それ以来「px+qy の形は内積だ」と絶えず考えるようにしている。

6 の (1) でも $x=\sqrt{3}\cos\theta-\sin\theta=\sqrt{3}\cos\theta+(-1)\sin\theta$ とすれば、自然と $x=2\cos(\theta+30^\circ)$ となる。

また $(\cos \alpha, \sin \alpha)$, $(\cos \beta, \sin \beta)$ の内積を考えることにより $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$ は自明だ。

内積について一言。

 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ はほとんどの生徒が覚えているが、内積の図形的意味はほとんどの生徒がわかっていないようだ。単なる式の暗記よ

- りも図形的な意味の方が大切だと思うのだが…。
- **42** (証明) (1) (答のみ示しておく) $u(x) = v(y) = ac y^2 + b(a+c)y + a^2 + b^2 + c^2 2ac$

(2)
$$x + \frac{1}{x} = y$$
, $x \times \frac{1}{x} = 1$ であるから

$$x$$
, $\frac{1}{x}$ は $t^2 - yt + 1 = 0$ の解である。

判別式をDとおくと $D=y^2-4 \le 0$

- (i) D=0 のとき
 - (ア) y=2 のとき x=1 となるから, $y(1)=(g(1))^2 \ge 0$
 - (イ) y=-2 のときも同様にできる。
- (ii) D<0 のとき

$$\frac{1}{x} = \overline{x} \ge t \lesssim b \lesssim b$$

$$u(x) = g(x)g(\overline{x}) = g(x)\overline{g(x)} = |g(x)|^2 \ge 0$$

よって,いずれの場合も成り立つ。

 $y=x+\frac{1}{x}$ であるから $y\leq -2$ または $y\geq 2$ ではないか!

次に考えたことは y=-2 (x=-1) のときと y=2 (x=1) のときだけ示せばよいのかも… と思った。しかしこれでは簡単すぎる…。もう一度問題をゆっくり読み返して,やっと気付いた。「x は実数」とはどこにも書いていない(x の代わりにz でも用いてくれれば … と思う)。なお,ある生徒から次のような別解を教えてもらった。

(方針) v(y) を b の 2 次式と見て、判別式の符号を調べる。

43 点 (a, 0) を極とし、x軸の正の方向を始線とする極座標で考えると $r=1+(-a)\cos\theta=1-a\cos\theta$

$$\therefore x = r \cos \theta + a = -a \cos^2 \theta + \cos \theta + a$$

$$=-a\Big(\cos\theta-\frac{1}{2a}\Big)^2+a+\frac{1}{4a}$$

$$-1 < a < -\frac{1}{2}$$
 より x の最小値は $a + \frac{1}{4a}$ となる。

$$a + \frac{1}{4a} - (-1) = \frac{(2a+1)^2}{4a} < 0$$

$$\left(\begin{array}{ccc} \cdot \cdot & -1 < a < -\frac{1}{2} \end{array} \right)$$

((相加平均)≧(相乗平均)を用いてもよい。)

よって、 C_2 上の点のx座標の最小値は-1より小さい。

求める面積をSとすると

$$S = 2\int_0^{\pi} \frac{1}{2} r^2 d\theta = \int_0^{\pi} (1 - a \cos \theta)^2 d\theta$$

$$= \int_0^{\pi} \left\{ 1 - 2a \cos \theta + \frac{1}{2} a^2 (1 + \cos 2\theta) \right\} d\theta$$

$$= \left[\theta - 2a \sin \theta + \frac{1}{2} a^2 \theta + \frac{1}{4} a^2 \sin 2\theta \right]_0^{\pi}$$

$$= \pi + \frac{1}{2} a^2 \pi$$

コメント (前半),(後半)とも極座標を用いると簡単である。

- 44 (証明) 確率変数 X□ を次のように定義する。
 - □色を含むとき $X_{\square}=1$,
 - □色を含まないとき $X_{\square}=0$

このように定めると

$$P(X_{\mbox{\scriptsize fi}}\!=\!0)\!=\!\!\left(\!\frac{a\!+\!b}{N}\!\right)^{\!n}\!,\ P(X_{\mbox{\scriptsize fi}}\!=\!1)\!=\!1\!-\!\left(\!\frac{a\!+\!b}{N}\!\right)^{\!n}$$

$$\therefore \quad E(X_{\mathsf{H}}) = 1 \times \left\{1 - \left(\frac{a+b}{N}\right)^n\right\} = 1 - \left(\frac{a+b}{N}\right)^n$$

他も同様にすることにより

$$E_n = E(X_{\dot{1}} + X_{\dot{7}} + X_{\dot{5}}) = E(X_{\dot{1}}) + E(X_{\dot{7}}) + E(X_{\dot{5}})$$

$$=3-\left(\frac{a+b}{N}\right)^n-\left(\frac{b+c}{N}\right)^n-\left(\frac{c+a}{N}\right)^n$$

コメント「正直」に求めると面倒。

58

「和の期待値」=「期待値の和」は案外使われていないのではないか。 '01 早稲田大(理工) 4(2)も同様である。

45 19⁵⁸+83⁵⁸ は明らかに2の倍数である。

 $19^{58} + 83^{58} = 361^{29} + 6889^{29}$ は $361 + 6889 = 7250 = 29 \times 250$ の倍数であるから 29 の倍数である。

よって $19^{58}+83^{58}$ を 58 で割った余りは0 である。

コメント お気付きのことと思うが年号問題である。筆者は昭和55年頃から昭和64年まで毎年、生徒への年賀状用に年号問題を作った。(平成になってからは作っていない。)この中で、一番印象に残っているのが本間である。紙と鉛筆でいろいろ問題を作っては答を出すという作業をくり返し、やっと気に入った問題ができた。合同式やフェルマーの小定理を使えばもっと簡単に解けるが、あえて、あまり予備知識を必要としない上の解答にしておく。

46 (証明) 円Oの半径をrとする。 △OAB+△OAD=△OAC であるから

$$\frac{1}{2}r^2\sin\theta + \frac{1}{2}r^2\sin\theta = \frac{1}{2}r^2\sin\theta$$

 $\sin\theta + \sin 4\theta - \sin 2\theta = 0$

 $\sin\theta + 2\cos 3\theta \sin\theta = 0$

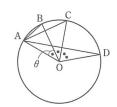
 $0^{\circ} < \theta < 45^{\circ}$ であるから $\sin \theta = 0$

$$\therefore \cos 3\theta = -\frac{1}{2}$$

 0° < 3θ < 135° であるから 3θ = 120° ∴ θ = 40° (これ以上何をせよというのか?)

コメント 出題者の意図は次のどれだろうか?

- ① 角度は求まるがこのような出題の方が易しい。
- ② 角度は求まるがこのような出題の方が難しい。
- ③ 角度は求めらないと思い込んでいた。



47 (証明)
$$\begin{pmatrix} 1 & -p \\ p & 1 \end{pmatrix}\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} 1 & p \\ -p & 1 \end{pmatrix}\begin{pmatrix} x_n \\ y_n \end{pmatrix}$$
 より

$$\tan \frac{\theta}{2} = p \ge \pi \le \left(\frac{x_{n+1}}{y_{n+1}} \right) = \left(\frac{\cos \theta}{-\sin \theta} \cdot \frac{\sin \theta}{\cos \theta} \right) \left(\frac{x_n}{y_n} \right)$$

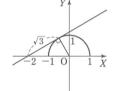
p が有理数であるから $\cos \theta$, $\sin \theta$ も有理数である。

また、 x_1 、 y_1 は有理数である。よって、いずれも成り立つ。

コメント (x_{n+1}, y_{n+1}) は (x_n, y_n) を原点のまわりに $-\theta$ 回転した 点であるということのみですべてが解決。

48 右図より
$$0 \le \frac{\sin x}{\cos x + 2} \le \frac{1}{\sqrt{3}}$$

よって
$$\frac{1}{\sqrt{3}}a=\sqrt{3}$$
 から $a=3$



 $\frac{\sin x}{\cos x + 2}$ を x の関数と見るのでは

なく、 $(\cos x, \sin x)$ 、(-2, 0) を結ぶ直線の傾きと見るのがポイント。

49 (証明略)

コメント 本問の類題は時々見かける。

y=-a(x+b)(x-c) の代わりに $x^2+y^2=1$, $y=\log_{10}(10-x)$ などでも (2) が成り立つ。

このことに関して知人から教えてもらった問題を一般化することに成功したので定理の形で述べておこう。

一補題-

a>0, b>0 とする。A(a,0), B(0,b) を結ぶ線分 AB 上の点P からx 軸,y 軸に下した垂線の足をそれぞれ Q, R とする。長方形 OQPR の面積が最大となるとき,点P は線分 AB の中点である。

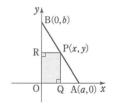
(証明) P(x, y) とする。x:(b-y)=a:b から $ab=bx+ay \ge 2\sqrt{abxy}$

$$\therefore xy \leq \frac{1}{4}ab$$

等号は bx=av かつ bx+av=ab

すなわち $x=\frac{a}{2}$, $y=\frac{b}{2}$ のとき成り立つ。

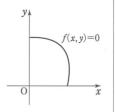
よって、点PはABの中点となる。



一定理

右の図において、曲線 f(x, y)=0 上の任意の 点で接線が存在するものとする。

f(x, y)=0 上の点Pからx軸, y軸に下した 垂線の足をそれぞれ Q, R とし, 点Pにおける f(x, y)=0 の接線がx軸, y軸と交わる点を



それぞれ、S、T とする。長方形 OQPR の面積が最大となるとき、Pは ST の中点となる。

(略証) PS=PT とする。

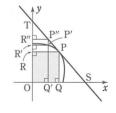
右図と補題より

長方形 OQ'P'R'<長方形 OQ'P"R"

<長方形 OQPR

よって,成り立つ。

(注) 条件をもう少しゆるめることも可。



$$50 \quad x = 2\cos t + \cos 2t, \quad y = \sin 2t$$

$$\binom{x+1}{y} = \binom{2\cos t + 2\cos^2 t}{2\sin t \cos t} = 2\cos t \binom{1+\cos t}{\sin t}$$

$$=4\cos t\cos\frac{t}{2}\left(\cos\frac{t}{2}\right)$$

$$\sin\frac{t}{2}$$

よって $\cos t \cos \frac{t}{2} = 0$ すなわち $t = \frac{\pi}{2}, \ \pi, \ \frac{3}{2} \pi$ のときのみ同じ点を通り、その点は $(-1,\ 0)$ となる。

コメント 「平和な時代には兵器は不要」…何のことか,わかるだろうか。じつはこの曲線を追跡すると爆弾のような形になる。

なお、この解答を筆者が数研の入試問題集に書いたのだが、筆者が 書いたことを見破った者がいてビックリ!

51 △ABC は正三角形で、O, C, A, B は共円であるから OB+OC=OA=1, OB=2OC

よって
$$OB=\frac{2}{3}$$
, $OC=\frac{1}{3}$

 $\angle AOC = 60^{\circ}$ であるから $\angle COx = 30^{\circ}$, $\angle BOx = 150^{\circ}$

$$\beta = \frac{2}{3} \left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i \right) = \frac{-\sqrt{3}+i}{3},$$
$$\gamma = \frac{1}{3} \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i \right) = \frac{\sqrt{3}+i}{6}$$

コメント 原題の誘導を無視した。出題者も上記のような背景から 問題を作ったのではなかろうか?

52 直線 AP が円Cと再び交わる点をRとし、Aから円Cに引いた接線の接点をTとすると

(A, P, Rの順序は関係ない)

$$\overline{AP} \cdot \overline{PQ} = 3$$
, $\overline{AP} \cdot \overline{AR} = \overline{AT}^2 = OA^2 - 1^2 = 3$

 $\therefore \overline{PQ} = \overline{AR} \quad \text{\sharp $t \overline{OP} = \overline{OR}$, $\angle APO = \angle QRO$}$

よって $\triangle APO \equiv \triangle QRO$ $\therefore OQ = OA = 2$ $\therefore t = 2$

コメント 本間でバニックに陥った受験生が大勢いた。筆者も最初はミスしていると思った。「t をs で表せ」とあるが,s が全然出てこない。本間は1 番だったため,できる受験生が時間を無駄にしたと思われる。本間に関連して気になることを述べておく。入試問題で度々「…を用いて表せ」という言葉が出てくるが,本間は例外としても,その他の文字が入ってよいのか(絶対に入る場合もある!)。例えば

'01 の京都大 の問題で「 α を用いて表せ」という場合, α を用いてもよいのか? また, α 以外に $\cos 72^\circ$ などを用いるのは…?

53
$$\sin \alpha \sin \beta \sin \gamma \le \left(\frac{\sin \alpha + \sin \beta + \sin \gamma}{3}\right)^3 \le \left(\sin \frac{\alpha + \beta + \gamma}{3}\right)^3$$

= $\left(\sin \frac{\pi}{3}\right)^3 = \frac{3}{8}\sqrt{3}$

 $\alpha=\beta=\gamma=\frac{\pi}{3}$ のときすべての等号が成り立つから,最大値は $\frac{3}{8}\sqrt{3}$ となる。

コメント (相加平均) \geq (相乗平均) と $y=\sin x$ (0 $< x<\pi$) の凸性 のみで解ける。本間を見て思い出した美しい問題を入れておく。

問題 ((1) は本質的に本問と同一である。)

- (1) $\triangle ABC$ において $\sin A + \sin B + \sin C$ の最大値を求めよ。
- (2) \triangle ABC において $\cos A + \cos B + \cos C$ の最大値を求めよ。
- (3) 鋭角三角形 ABC において $\tan A + \tan B + \tan C$ の最小値を求め よ。
- 54 (1) $f(x) = e^{nx} 1 e^x$ とおくと, $f(x) = e^x \{ e^{(n-1)x} 1 \} 1$ となる。

 $n \ge 2$, x > 0 より Y = f(x) は単調増加。

$$f(0) = -1 < 0, \quad f\left(\frac{1}{n-1}\right) = e^{\frac{1}{n-1}}(e-1) - 1 > e^{-1} - 1 > 0$$

よって,成り立つ。

(2) (1)
$$\sharp b \ 0 < a_n < \frac{1}{n-1}$$
 $\therefore \lim_{n \to \infty} a_n = 0$

$$e^{a_n} = b_n = e^{na_n} - 1$$
 $\downarrow b$ $na_n = \log(e^{a_n} + 1)$

$$\therefore \lim_{n\to\infty} n a_n = \log(e^0+1) = \log 2$$

コメント 筆者が入手した解答はすべて, (1), (2) とも煩雑な解法であった。

なお,「 $\lim_{n\to\infty}a_n$, $\lim_{n\to\infty}na_n$ を求めよ。」とあれば「 $\lim_{n\to\infty}a_n=0$ となる

ハズだ」くらいの予想はしてもよいのでは?

原稿を書き終わった段階で、知り合いの先生から「 $e^x = t$ とおくと簡単にできますよ」と教えられる。

$$55$$
 $r>1$ であるから $r-\frac{1}{r} \le \left|z+\frac{1}{z}\right| \le r+\frac{1}{r}$

 $z=\pm ir$ のときのみ左側の等号が成り立ち、 $z=\pm r$ のときのみ右側の等号が成り立つ。(以下略)

コメント 「普通の」三角不等式でイッパツ。

56
$$(x^2f(x))' = 2xf(x) + x^2f'(x) = -8x^3 + 6x^2 - 10x$$

$$\therefore x^2 f(x) = -2x^4 + 2x^3 - 5x^2 + C$$

f(x) は整式であるから C=0

$$f(x) = -2x^2 + 2x - 5$$

□メント 原題では「…を満たす 2 次関数…」となっていたが、この解答でわかるように、整関数という条件のみで解ける。もし「 2 次」という言葉がなければ型通り次数の決定から入るのではなかろうか。 У↑

57 \triangle APB を点Bのまわりに 60° 回転したものを \triangle DQB とすると, \triangle BPQ は正三角形より AP+BP+CP=DQ+QP+PC D $(0,-\sqrt{3})$ (定点) となるから,右下図より

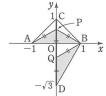
$$P\left(0, \frac{\sqrt{3}}{3}\right)$$

すなわち、Poy座標が $\frac{\sqrt{3}}{3}$ のとき

最小値 $1+\sqrt{3}$ となる。

コメント この解は有名(?)な解である。計算のみで解くと大変。 この解ならば、「点Pがy軸上」という条件も不要。

(参考事項) どの内角も 120°未満の △ABC が与えられているとき,

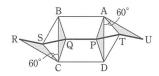


 $\angle APB = \angle BPC$ (= $\angle CPA$)=120° のとき AP+BP+CP は最小となる。

 $\angle A \ge 120^\circ$ のときは点Pが頂点Aに一致するとき AP+BP+CP は最小となる。

58 (2) (条件をゆるめて「2点P,Qは正方形 ABCD の内部または 周上の点である」として解答しておく。)

 \triangle BQC, \triangle APD を図のように 60° 回転 した三角形を \triangle RSC, \triangle ATU とする と, R, U は定点となる。



△CQS, △APT は正三角形となるから

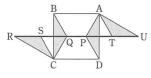
$$PQ+AP+DP+BQ+CQ$$

=PQ+PT+TU+RS+QS≥RU (一定)

R, S, Q, P, T, U が一直線上のとき等号が成り立つ。

よって

$$P\left(1-\frac{\sqrt{3}}{3}, 0\right), Q\left(\frac{\sqrt{3}}{3}-1, 0\right) \emptyset \geq \mathcal{E} \mathbb{R}$$



最小値 $2(1+\sqrt{3})$ となる。(右図参照)

コメント 素直に $PQ+\cdots\cdots+CQ$ をaで表して、微分法を用いると計算が大変である。本間の類題は以前に数学オリンピックに出題されている。

59 $a^2+b^2=c^2+d^2=1$, ac+bd=0 であるから

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\therefore \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$a^2+c^2=1$$
, $b^2+d^2=1$, $ab+cd=0$

コメント いろいろな解法が考えられるが、この解法が一番速いと 思う。 60 右図のように文字を定める。

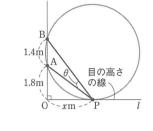
が見た節囲では)

2点 A,B を通る円が l と接するとき θ は最大となる。

このとき、 $x^2=1.8\times3.2$ から x=2.4 (m)

コメント 本問の類題が参考書などに

載っていることが多いが、解答は(筆者



(相加平均) \geq (相乗平均) または微分法を用いて $\tan \theta$ の最小にもちこんでいる。

素直に θ の最大、最小と考えれば中学生にも解ける。

なお、本間(またはその類題か?)が『お寄せいただいたお言葉』 に出てくる「逆指名事件」の発端である。

61 (証明) F(x)=xf(x) とおくと、方程式 F(x)=0 は異なる3つの正の数と0を解にもつ。

F'(x)=g(x) であるから、ロールの定理より明らかに成り立つ。

コメント $f(x)=(x-\alpha)(x-\beta)(x-\gamma)$ とおいて, g(0), $g(\alpha)$ などの符号を調べてもできるが…。

62 右図のように

 O_{1}' , O_{2}' , P', Qを定めると,

 $O_2'Q = QP = QO_1'$

から O2'P'=OO1'=p

 $P'O_1' = O_2'O = -r$

よって O₂P: PO₁=O₂'P': P'O₁' から

$$s: q=p: (-r)$$
 $\therefore \frac{rs}{pq}=-1$

コメント 原題ではPにおける接線、法線を求め、p、q を a で表す問題が入っていた。実は筆者は誘導に従って $\frac{rs}{pq}$ を計算したとこ

ろ、aが消えてしまい、「これは何かあるゾ」と考えてこの解法にたどりついた。

63 (証明) 右図において \angle HOA=a, \angle HOB=b, \angle HOC= $\frac{a+b}{2}$ とし、ABの中点をMとすると

M C A A

OA < OB & b AC < BC

: HC<HM

よって,成り立つ。

コメント 気付けば簡単! 正接の定義のみで解決する。

64 Pの座標は(計算するまでもなく)(1, 2a) となるから C_1 の方程式は $y=\frac{a}{2}(x+1)^2$ となる。

コメント 「放物線上の異なる 2 点 P, Q における接線の交点を R とすると

 $(R o x 座標) = \frac{(P o x 座標) + (Q o x 座標)}{2}$ となる。」は有名な事

実だが、その特別な場合が本題である。

3 も同様である。

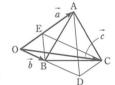
また、教科書や参考書によく出ている問題

「a, b, c が実数のとき $a^2+b^2+c^2 \ge ab+bc+ca$ を証明せよ。」 では必ずといってもよいと思うが,

$$a^{2}+b^{2}+c^{2}-ab-bc-ca=\frac{1}{2}\{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\}$$

という式変形を用いている。ところがこの問題の特別な場合 「a, b が実数のとき $a^2+b^2+1 \ge ab-a-b$ を証明せよ。」 ではほとんどの本は上の式変形を用いていない。

65 (証明) OB の延長上に OA=OD となる点D をとり、DとA、DとCを結ぶ。



OA上に OB=OE となる点EをとりEとCを結

ぶ。A, E, B, D, C は共円であるから、四角形 ODCE は平行四辺 形となる。

$$\therefore \vec{c} = \overrightarrow{OE} + \overrightarrow{OD} = \frac{\overrightarrow{OE}}{\overrightarrow{OA}} \overrightarrow{OA} + \frac{\overrightarrow{OD}}{\overrightarrow{OB}} \overrightarrow{OB} = \frac{|\vec{b}|}{|\vec{a}|} \vec{a} + \frac{|\vec{a}|}{|\vec{b}|} \vec{b}$$

コメント ベクトルの顔をした幾何の問題である。

66 $\frac{x}{a} = X$, $\frac{y}{b} = Y$ とおくと $X^2 + Y^2 = 1$ と $XY = \frac{k}{ab}$ が第 1 象限で接するから、接点は $(X, Y) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ となる。 したがって $k = \frac{1}{2}ab$, $(x_1, y_1) = \left(\frac{\sqrt{2}}{2}a, \frac{\sqrt{2}}{2}b\right)$ となる。

コメント 楕円に関する問題は、上のように円に関する問題に書き換えると簡単に解ける問題が多い。

一例をあげておく。

問題 点 $\left(\frac{a}{2},0\right)$ を通る楕円 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ の弦の中点の軌跡を求めよ。 (補足) 今まで無意識に使っていた楕円の「精」という字の意味を御存じだろうか。 2年程前,漢字に関する本を読んでいて偶然見つけた。 「精」は木の幹を斜めに切った切り口を意味するとのこと。ナットク,ナットク。

「(1)
$$|x+y| \le |x| + |y|$$
 (2) $|x| \le \frac{x^2 + 4}{4}$ 」が入っていた。

68 (結論) 周期関数でない。

69
$$\frac{1}{2} \times \frac{3}{4} \times \frac{5}{6} \times \frac{DS}{SA} = 1$$
 \$\text{ th AS: SD=5: 16}

コメント 次の定理を以前,大先輩の先生から教えていただいた。

- (定理) -

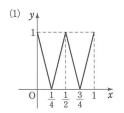
四面体 ABCD の辺 AB, BC, CD, DA 上にそれぞれ P, Q, R, Sがあり, P, Q, R, Sが同一平面上にあるとき

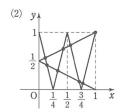
$$\frac{AP}{PB} \times \frac{BQ}{QC} \times \frac{CR}{RD} \times \frac{DS}{SA} = 1$$
 が成り立つ。

証明は非常に簡単であるので省略するが、筆者はこの定理を「空間のメネラウスの定理」と勝手に名付けている。筆者が不勉強のためか、 筆者が見た本では一度もお目にかからなかった。最近やっとある本に載っているのを見つけた。

70 (1) (説明略)(次ページ左図)

(2) f(f(x)) = y とおくと f(y) = x よって、次ページ右図から 8 個





コメント (2) まともに y=f(f(f(x))) のグラフをかくと (工夫す ればラクだが)面倒である。(1)の答がそのまま利用できることに気 付いた。

71 (証明) (1) x=1 のときは明らかに成り立つ。

x > 1 のとき $\frac{\log x}{x-1}$ は (微分するまでもなく) 単調減少であるから

$$\frac{\log x}{x-1} > \frac{\log(x+1)}{x}$$

 $\therefore x \log x > (x-1) \log(x+1)$

よって、いずれの場合も成り立つ。

(2) n=1, 2 のときは明らかに成り立つ。

 $n \ge 3$ のとき(1)より $x^x > (x+1)^{x-1}$ であるから

$$k^{k} > (k+1)^{k-1} (k=2, 3, \dots, n-1)$$

辺々かけると $\{(n-1)!\}^2 > n^{n-2}$: $(n!)^2 > n^n$

コメント (1) 上のような解答なら底が 10 でも可。

- 72 (証明) 与えられた条件からすべての実数 x について

 $a_1x^2+2b_1x+c_1>0$ b>0 $a_2x^2+2b_2x+c_2>0$

よって, すべての実数xについて

 $(a_1+a_2)x^2+2(b_1+b_2)x+(c_1+c_2)>0$ が成り立つから

 $(b_1+b_2)^2-(a_1+a_2)(c_1+c_2)<0$ となる。

コメント a₁, b₁, c₁, a₂, b₂, c₂ のみで処理しようとすると計算 が面倒な上, 式変形が気付きにくい。

73 (証明)
$$\mathrm{OP} < \frac{1}{2}$$
 かつ $\mathrm{OQ} < \frac{1}{2}$ かつ $\mathrm{OR} < \frac{1}{2}$ とする。

同様にすることにより

$$\angle AOB + \angle BOC + \angle COA > \frac{2}{3} \pi + \frac{2}{3} \pi + \frac{2}{3} \pi = 2\pi$$

よって,矛盾する。

コメントまたもや「三角」不等式の登場。

74 (証明) E(1,0) とする。

(必要条件)
$$w=\alpha\beta$$
 から $\frac{w}{\alpha}=\frac{\beta}{1}$ (∵ $\alpha \neq 0$)

よって △ROP∞△QOE ∴ ∠OQE=90°

同様にして ∠OPE=90° よって、成り立つ。

(十分条件) ∠POE+∠PEO=90°

 $\angle PEO = \angle OQR$, $\angle OQR + \angle ROQ = 90^{\circ}$

∴ ∠POE=∠ROQ

 $\angle OPE = \angle ORQ = 90^{\circ}$

∴ △OPE∞△ORQ

$$\therefore \quad \frac{\alpha}{1} = \frac{w}{\beta} \qquad \therefore \quad w = \alpha\beta$$

コメント 教科書の「複素数の積の作図法」のみで解ける。

75 (証明) A, Q, H, Yが共円より明らか。

コメント この問題には懐しい思い出がある。筆者が高一のとき,

友人(だったと思う)から質問された次の問題と本質的に同じである (記号は問題の図中の記号と同じにしておく)。

仮定は全く同じで、結論は次のようになっていた。

「AHの長さはおのおのの正方形の一辺の長さの和に等しい」

△AYZ∞△QAP は簡単にわかるが,

△AYZ≡△QAP がなかなか気付かない。「平行線と比例」などで強

引に長さを出せばできることはわかっているが、シャクだ。どれくらい考えただろうか。ある瞬間、A、Q、H、Yが共円であることに気付いた。こんな補助線もあるのかと感激したのを今でも覚えている。

76 (証明) $n \ge 2$ としてよい。n=2 のときは明らかに成り立つ。 $n \ge 3$ のとき,仮定から

 $a_1 \le a_2 \le \cdots \le a_{k-1} < 0 \le a_k \le \cdots \cdots \le a_n$ となる k $(2 \le k \le n-1)$ が存在する。

$$a_1 + a_2 + \dots + a_n = 0$$

$$a_2 + \dots + a_n > 0$$

$$a_k + \dots + a_n > 0$$

$$a_n > 0$$

したがって,辺々加えることにより,成り立つ。

コメント シーソーを思い出せば明らかだ。

77 (証明) a+b+c=p, ab+bc+ca=q, abc=r とおくと a, b, c は方程式 $x^3-px^2+qx-r=0$ の実数解である。 p>0, q>0, r>0 であるから $x\leq 0$ とすると $x^3-px^2+qx-r<0$ となり不適。

 \therefore a>0, b>0, c>0

コメント 2文字の場合,すなわち

「実数 a, b が a+b>0, ab>0 を満たすとき, a>0, b>0 を示せ」ならば

ab>0 から a, b は同符号。よって a+b>0 から a>0, b>0 と簡単に示せる。 3 文字の場合,この方法でも解けるが面倒。上の解答で,微分法を用いると大変であることに気付いて欲しい。

78
$$\frac{10^{210}}{10^{10}} > \frac{10^{210}}{10^{10} + 3} > \frac{10^{210}}{10^{11}}$$
 より $10^{200} > \frac{10^{210}}{10^{10} + 3} > 10^{199}$ よって, 200桁である。

$$\frac{10^{210}}{10^{10}+3} = \frac{10^{210}+3^{21}}{10^{10}+3} - \frac{3^{21}}{10^{10}+3}$$

 $\frac{10^{210}+3^{21}}{10^{10}+3}$ は整数であるから1の位の数字は1である。

$$\frac{3^{21}}{10^{10}+3} = \frac{10460353203}{100000000033} = 1.\dots$$

よって $\frac{10^{210}}{10^{10}+3}$ の 1 の位の数字は 9 となる。

コメント (前半) 非常に易しい。

(後半) 「n が奇数の自然数のとき x^n+y^n は x+y で割り切れる」という基本的事実さえ知っていれば、1 の位の数字を求めるのは小学校初級レベルの虫食い算の知識でオワリ。

79 (証明) (3) x=0 のときは両辺ともに0となり、成り立つ。

x > 0 のとき $f''(x) \ge 0$, $0 < t \le x$ より

$$\frac{f(2t) - f(t)}{2t - t} \leq \frac{f(2x) - f(x)}{2x - x}$$

$$\therefore f(2t) - f(t) \le \frac{f(2x) - f(x)}{x} t$$

(この式は t=0 のときも成り立つ。)

$$\therefore \int_0^x \{f(2t) - f(t)\} dt \le \frac{x\{f(2x) - f(x)\}}{2}$$

コメント 原題では小問(1), (2) の誘導があるが, (1), (2) を無視する方がラク。

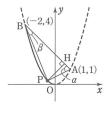
80 点 P から直線 AB へ下した垂線の足をHとする。

$$\frac{1}{\tan \alpha} + \frac{1}{\tan \beta} = \frac{AH}{PH} + \frac{BH}{PH} = \frac{AB}{PH} = \frac{3\sqrt{2}}{PH}$$

よって、PH が最大のとき

$$\frac{1}{\tan \alpha} + \frac{1}{\tan \beta}$$
 は最小となる。

$$y=x^2 \downarrow b \quad y'=2x$$



$$2x = \frac{1-4}{1-(-2)} \ge 3x \le 2 = -\frac{1}{2}$$

よって
$$P\left(-\frac{1}{2}, \frac{1}{4}\right)$$
となる。

直線 AB:x+y-2=0 であるから $PH=\frac{9}{8}\sqrt{2}$

よって、求める最小値は $\frac{8}{3}$ となる。

コメント 正直に $\tan \alpha$, $\tan \beta$ を求めては大変。

81
$$y = \sum_{i=1}^{n} \{|x-i| + |x-(2n+2-i)|\} + |x-(n+1)|$$

$$\geq \sum_{i=1}^{n} |2n+2-i-x+x-i| + 0 = \sum_{j=1}^{n} 2j = n(n+1)$$

x=n+1 のとき等号が成り立つ。

よって、x=n+1 のとき最小値 n(n+1) となる。

コメント またまた、世間で言う三角不等式の出番である。

82 (1) △XOA∽△AOY より

$$\angle A = \angle XAO + \angle OAY = \angle XAO + \angle OXA$$

= $180^{\circ} - \theta = 180^{\circ} - \frac{1}{2} \angle O$

- (2) $0^{\circ} < \theta < 90^{\circ}$ であるから $90^{\circ} < \angle A < 180^{\circ}$
 - \therefore t < 0, $t \ge 1$

コメント 図形的に解けば、ほとんど計算不要。

83 (2)
$$q_{n+1} = \frac{3}{4} q_n + \frac{1}{4} (1 - q_n), \quad q_1 = \frac{1}{4} \text{ is } q_n = \frac{1}{2} - \frac{1}{2^{n+1}}$$

コメント (1) を利用すると面倒。

84 (3) $a_1+a_2+\cdots\cdots+a_k=m$ (但し a_1 は自然数, a_2 , …, a_k は負でない整数) とおくと

$$(a_1-1)+a_2+\cdots+a_k=m-1$$

 $m=1, 2, \cdots, 9$ であるから、 $S(k, m)={}_{k}H_{m-1}={}_{k+m-2}C_{m-1}$ 本問も(1), (2) を無視すると非常に易しい問題である。

85 Pからx軸、y軸に下した垂線の足をそれぞれQ、Rとすると $S = \frac{1}{2}(2AQ) \cdot (2BR) = 2AQ \cdot BR \le AQ^2 + BR^2$

$$=1-PQ^2+1-PR^2=2-a^2$$

AQ=BR のとき等号が成り立つ。

よって,最大値は $2-a^2$ で,このとき $P\left(\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right)$ となる。

コメント 三角比不要!

86 (1) (略)

(2)
$$\sum_{k=1}^{t^2-1} a_k = \sum_{i=1}^t (t^2 - i^2) = \dots = \frac{1}{6} t (t-1) (4t+1)$$

コメント「垂直思考」から「水平思考」へ

有名な「継子立」の話 天明3年(1783年)発行の本(灘校数学研究室蔵)の表紙と本文の1ページ



中国の問題集の目次

(日本語になおすと…?)

目	录				
		()	习题	<u>(i</u>	(题解)
第1章		(1)	(180)
第2章		(7)	(182)
第3章		(13)	(188)
第4章	无理数和复数	(19)	(192)
第5章	二次方程	(25)	(196)
第6章	方程组	(30)	(201)
第7章	方程和恒等式	(33)	(204)
第8章	不等式	(38)	(209)
第9章	等式、不等式的证明	(43)	(213)
第10章	二次函数 ·······	(48)	(220)
第11章	各种函数 ······	(57)	(228)
第12章	映射	(60)	(233)
第13章	指数函数和对数函数	(65)	(237)
第14章	锐角三角函数	(72)	(245)
第15章	任意角三角函数	(75)	(246)
第16章	三角函数的应用	(81)	(252)
第17章	向量及其计算	(85)	(258)
第18章	向量的应用	(90)	(262)
第19章		(95)	(267)
第20章		(99)	(273)
第21章		(1	04)	(277)
第22章	不等式和域	(1	109)	(282)
第23章	情况的数	(1	14)	(290)
第24章	排列、组合	(1	18)	(293)
第25章	概率及其计算	(1	.25)	(299)
第26章		(1	32)	(305)
第27章		(1	40)	(310)
第28章		(1	45)	(316)
第29章		(1	.50)	(324)
第30章		(1	56)	(331)
第31章		(1	61)	(349)
第32章	综合题	(1	66)	(360)
	第第第第第第第第第第第第第第第第第第第第第第第第第第第第第第第第第第第第第第	第 1 章 整式分解	第 1 章 整式的四则运算 (第1章 整式的四则运算 (1 年	第1章 整式的四则运算 (1) 第2章 因式分解 (1) 第4章 无理数和复数 (19) 第5章 二次方程 (25) 第6章 方程组 (30) 第7章 方程和恒等式 (33) 第8章 不等式 (38) 第9章 等式、不等式的证明 (43) 第10章 二次函数 (48) 第11章 各种函数 (57) 第12章 映射 (60) 第13章 指数函数和对数函数 (65) 第14章 锐角三角函数 (72) 第15章 任意角三角函数 (75) 第16章 三角函数的应用 (81) 第17章 向量及其计算 (85) 第18章 向量的应用 (90) 第19章 点的坐标 (95) 第20章 直线方程 (99) 第21章 圆的方程 (104) 第22章 不等式和域 (109) 第23章 情况的数 (114) 第24章 排列、组合 (118) 第25章 概率及其计算 (125) 第26章 集合与论证 (132) 第27章 等差数列 (140) 第28章 等比数列 (156) 第30章 数学归纳法 (156) 第30章 数学归纳法 (156) 第30章 数学归纳法 (156)

何の変哲もない(?)問題

1

曲線 y=f(x) 上の点 P(x,y) における接線が、x 軸およびy 軸と 交わる点をそれぞれ Q、R とする。点P はつねに線分 QR を 2:1 に内分する。次の問いに答えよ。

- (1) この曲線が満たす微分方程式を求めよ。
- (2) (1) の微分方程式を解け。
- (3) このうち、点 $\left(\frac{1}{2},\sqrt{2}\right)$ を通る曲線の方程式を求めよ。

('88 某大)

(解答) (1) QP: PR=2:1, P(x, y) であるから Q(3x, 0) とおける。

$$\therefore \quad \frac{dy}{dx} = \frac{0-y}{3x-x} = -\frac{y}{2x}$$

(2) (1) $\ \ \ \ \ \ \ \frac{1}{y} \frac{dy}{dx} = -\frac{1}{2x}$

両辺をxで積分して

$$\log|y| = -\frac{1}{2}\log|x| + C_1$$

$$\therefore |y| = \frac{C_2}{\sqrt{|x|}} \quad \therefore \quad y = \frac{C}{\sqrt{|x|}} \quad \dots \quad \mathbb{D}$$

(3) ① が点
$$\left(\frac{1}{2},\sqrt{2}\right)$$
 を通るから $C=1$

$$\therefore y = \frac{1}{\sqrt{|x|}}$$

9

関数
$$f(x)$$
 と $g(x)$ について、 $f(0)=-1$ 、 $g(0)=2$ および
$$\frac{d}{dx}\{f(x)+g(x)\}=6x, \ \frac{d}{dx}\{f(x)g(x)\}=8x^3+6x \text{ が成り立つと}$$
き、 $f(x)$ 、 $g(x)$ を求めよ。 ('94 某大)

(解答) $f(x) + g(x) = 3x^2 + C$,

$$f(x)g(x) = 2x^4 + 3x^2 + D$$
 とおける。

$$f(0)=-1$$
, $g(0)=2$ であるから $C=1$, $D=-2$

$$f(x) + g(x) = 3x^2 + 1$$
, $f(x)g(x) = 2x^4 + 3x^2 - 2$

よって f(x), g(x) は $X^2-(3x^2+1)X+(2x^2-1)(x^2+2)=0$ の解である。

$$f(0) = -1$$
, $g(0) = 2$ であるから $f(x) = 2x^2 - 1$, $g(x) = x^2 + 2$

3

関数 $f_1(x)$ が与えられたとき,

$$f_{n+1}(x) = \int_0^x e^t f_n(t) dt$$
 ①

によって $f_2(x)$, $f_3(x)$, $f_4(x)$, ……… を定める。このとき、次の問いに答えよ。

- (1) $p_1(x) = 1$ とする。 $f_1(x) = p_1(x)$ のときに① で定まる $f_n(x)$ を $p_n(x)$ で表す。
 - (i) $p_3(x) = \frac{1}{2} \{g(x)\}^2$ となる関数 g(x) を求めよ。

(以下略) (101 某大)

(解答) (1) (i)
$$p_2(x) = \int_0^x e^t dt = e^x - 1$$

$$p_3(x) = \int_0^x e^t (e^t - 1) dt = \left[\frac{1}{2} e^{2t} - e^t \right]_0^x = \frac{1}{2} e^{2x} - e^x + \frac{1}{2} = \frac{1}{2} (e^x - 1)^2$$

:.
$$\{g(x)\}^2 = (e^x - 1)^2$$
 :: $g(x) = \pm (e^x - 1)$

. 1

 α , β は方程式 $x^2-5x+5=0$ の 2 つの解 (根) であるとし、整式 f(x) は次の条件(A), (B) を満たしているとする。

- (A) f(x) を $x-\alpha$ で割ったときの余りは β , $x-\beta$ で割ったとき の余りは α である。
- (B) f(r) を r-2 で割った余りは -3 である。

この整式 f(x) を $(x^2-5x+5)(x-2)$ で割ったときの余り

 ax^2+bx+c を、次のようにして求めよう。

$$\alpha+\beta=$$
 ア, $\alpha^2+\beta^2=$ イウ, $\alpha-\beta$ $\neq 0$ であるから、条件(A) より エオ $\alpha+$ カ $b+$ \neq $c=$ ク,

 $[\tau]a+b=[\exists +$

となる。また条件(B)より

したがって求める余りの係数は a=[g], b=-[fy],

c= テト である。

('89 共通1次試験)

(筆者の解答) (一部略)

条件(A) より $f(x) = (x^2 - 5x + 5)(x - 2)g(x) + a(x^2 - 5x + 5) + \alpha + \beta - x$ とおける。

よって
$$\alpha+\beta=5$$
 と $a(x^2-5x+5)+\alpha+\beta-x=ax^2+bx+c$ から $-5a-1=b$, $5a+5=c$ (したがって $^{xx}-5$ $^{y}0$ $^{*}1$ $^{y}5$ $^{y}5$ $^{y}-1$) (以下一部略)

$$a=6, b=-31, c=35$$

4の問題は見覚えのある方も多いと思う。そこで、もう一度、1から 眺めてみよう。

実は、この章では筆者が気付いた出題ミスの問題をとりあげた(した がって、4以外は大学名を伏せた)。

1 '88年秋の大阪高等学校数学教育会総会で筆者が出題大学の先生に「出題ミスだと思うが……」と指摘したが、大学の先生に筆者の質問の意味をなかなか理解してもらえなかった。高校生の解答としては

上記の解答で許されると思うが……。あらためてくわしく意見を述べたがわかってもらえない。壇上の他大学の先生が筆者の質問の意味がわかって、当該大学の先生に耳打ち。やっとわかってもらえた。 筆者の解答は

「
$$x>0$$
 のとき $y=\frac{1}{\sqrt{x}}$, $x<0$ のとき $y=\frac{C}{\sqrt{-x}}$ (C は 0 でない定数)」である。

その夜,大学の先生を招いての懇親会の席で,その先生の次の一言が 印象に残っている。

「私の専門は微分方程式です。お恥ずかしい。」 この問題に関連したことを述べておく。

どこの教科書でも

$$\int \frac{1}{x} dx = \log|x| + C (C は積分定数)$$

と書いてあるが、

$$\int \frac{1}{x} dx = \begin{cases} \log x + C_1 (x > 0 \text{ のとき}) \\ \log(-x) + C_2 (x < 0 \text{ のとき}) \end{cases} (C_1, C_2 は積分定数)$$
とすべきである。

2 これも秋の総会で筆者が質問した問題である。この質問には出題 大学の先生が率直に誤りを認められた。

次のような答でもよい。(無数に解がある。)

$$x$$
 が整数のとき $f(x)=2x^2-1$, $g(x)=x^2+2$
 x が整数でないとき $f(x)=x^2+2$, $g(x)=2x^2-1$

3 本問も2と同じで、関数 g(x) は無数にある。例えば、区間 [0,1] で $g(x)=e^x-1$ 、その他の区間で $g(x)=1-e^x$ などなど。 (大学側の意見は聞いていない。)

4 某予備校の解答速報作製の場でのこと。他の人は「オーソドック

ス」に解いていた。答をつきあわせたところ $x \sim y$ が異なっていて、 $y \sim y$ が一致している。「こりゃおかしい。」ということになって念入りにチェックしたがどちらの解答もミスがないことがわかり、一時騒然となる。翌朝、新聞を見ると、やはり大きく取り上げていた。結局、本間は全員に満点が与えられることになった。

ついでに「センター試験」について苦言を一つ。

数学は論理を重んじる学問。

例えば「r x+r y=3x+5y から r 3 45」と断定させるのはど うか?

 $\lceil 7x + \lceil 4y \rceil = 3x + 5y \iff 73 \land 5 \rfloor \not \epsilon!$

1991年 9 月25日 発行 毎日新聞社

ト教育の光と影 私立灘中 高等学校」 より

じているようだ。

な解法をしてくるんですよ。参考書でも紹介しておきました」。優秀な生徒に恵まれた喜びを感

い生徒達の御陰である」との一文が添えられた。「生徒に教えられることが多いんです。鮮やか

前書きに「本書が上梓の運びになったのは恩師や先輩同僚の先生方それに加えて、素晴らし

)引き抜き

中略

大付属平野高校に十五年いた。進学校の平野を支えてきた一人だけに、同僚や生徒たちから見捨 十一人(事務職を除く)。うち公立の経験者が半数以上の二十六人を数える。最近は、 新卒を採用したケースもあるが、主力は公立で一定の評価を得ているベテランのヘッド・ハンテ てて行くのかと言われ、つらい思いもしたというが、やっぱり、灘は気楽ですわと満足そうに語る イングである。 その具体例を――。 塩﨑勝彦。阪大理学部卒の四十九歳。灘に来て二年の数学科教諭である。それまでは大阪教育 難のスタッフは現在、 |九九○年六月、一冊の参考書を出版した。科学新興社の「モノグラフ」シリーズ方程式であ 灘にとって教師のレベルの維持は、まさに生命線ともいえるからだ。 校長、 教頭をはじめ教諭四十六人、 専任講師二人、時間講師一人の計五 灘

出

82

旺文社 高校クラスルーム・秋季数学号

('87)

教材研究

(相加平均)≥(相乗平均)の利用 ---62年大学入試問題より---

大阪教育大附属高校教諭 塩崎 勝彦

(以下の文章では、n個の負でない実数について、 (相加平均)≥(相乗平均) を収加として扱うことに する。)

問題1 エ空 空間内の点 P(0, 0, 1) を中心とする 半径1の球派Kがある。K上の点 Q(a, b, c) が条件 a>0, b>0, c>1 のもとでK上 を動くとき。QにおいてKに接する平面を L とし、Lが主稿。文稿。 本稿と交わる点をそ 北デれみ、B、Cナギる。このような三角形

ABC の面積の最小値を求め上。(東大・理科) (解答) L: ax + by + (c-1)(z-1) = 1 L 9 $A(\frac{c}{a}, 0, 0)$, $B(0, \frac{c}{c}, 0)$, $C(0, 0, \frac{c}{c-1})$ となる。原点のから平面上までの距離は

 $\frac{|c|}{\sqrt{a^{1}+b^{2}+(c-1)^{2}}} = c \pm 9$ $\frac{1}{2} \cdot \frac{c}{a} \cdot \frac{c}{b} \cdot \frac{c}{c-1} \cdot \frac{1}{3} = \frac{1}{3} c \cdot \triangle ABC$

 $\triangle ABC = \frac{c^4}{2ab(c-1)} \ge \frac{c^4}{(a^4+b^4)(c-1)}$ $= \frac{c^2}{(2c-c^4)(c-1)} = \frac{1}{3-(c+\frac{2}{c})} \ge \frac{1}{3-2\sqrt{2}}$

よって、 \triangle ABC は、a=b かつ $c=\frac{2}{c}$ す なわち $a=b=\sqrt{\sqrt{2-1}}$ かつ $c=\sqrt{2}$ のと き最小となり、最小値は $3+2\sqrt{2}$

問題 2 P(4, 1) を通る直線 $\frac{x}{a} + \frac{y}{b} = 1$, (a>0, b>0) の x 軸と y 軸と y を x を x たんだれ x , Bとする。原点OからA、Bまでの距離の和 $\overline{OA}+\overline{OB}$ の最小値を与えるような直線に対し、 $\triangle OAB$ の面積を求めよ。(岩手医大-医)

(解答) 直線 $\frac{x}{a} + \frac{y}{b} = 1$ が点Pを通るから

 $\frac{4}{a} + \frac{1}{b} = 1$ $\therefore OA + OB = a + b = (a + b) \left(\frac{4}{a} + \frac{1}{b}\right)$

 $=5+\frac{4b}{a}+\frac{a}{b} \ge 5+4=9$ したがって、OA+OB は、 $\frac{4b}{a}=\frac{a}{b}$ すなわ

ち a=6, b=3 のとき最小。このとき、 $\triangle OAB = \frac{1}{2} \cdot 6 \cdot 3 = 9$

▶以上のように、 n=2 のときの(相加平均) ≧(相乗平均)が利用できる問題として、その ほか東北学院大-工団、茨城大-教育・典②の 2 題をあげておこう。

a は 0 くa く 1 をみた十定数とし、 方程式 $\frac{y}{a}$ + $\frac{y}{1-a}$ = 1 (0 $\le x \le a$, 0 $\le y \le 1-a$) で 要 さ 1 を 1 を 1 を 1 で 1 を 1 を 1 を 1 を 1 を 1 を 1 と 1

(1) V(a) を求める。(2) V(a) の最大値およびそのときのaの値を求める。(信州大-理・医)

- 20 -

(解答) (1) (説明略) $V(a) = \frac{\pi}{15}a(1-a)^{4}$ (2) 0 < a < 1 より 1-a > 0 したがって、 $2 = 2a + (1-a) + (1-a) \ge 3$ $\sqrt[3]{2a(1-a)^{4}}$

 $2=2a+(1-a)+(1-a) \ge 3 \ V2a(1-a)^{1}$ ゆえに、V(a) は 2a=1-a すなわち $a=\frac{1}{3}$ のとき最大となり、最大値は $V(\frac{1}{3})=\frac{4}{405}\pi$

頂点を下にした直円すい状の、上面のふた がない容器で容積が一定値Vのものを考え る。そのような容器のうちで、表面積を最小 にするものを求めたい。その容器の口の半径 と高さの比をどのように定めればよいか。た だし、面の厚さは考えなくてよい。

(解答) 半径をx, 高さをy, 表面積をSと すると, $V=\frac{1}{3}\pi x^{2}y$, $S=\pi x\sqrt{x^{2}+y^{2}}$ より

(pt A 图 大)

$$\begin{split} S^{2} &= \pi^{2}x^{2}(x^{2} + y^{2}) = \pi^{2}(x^{4} + x^{4}y^{2}) \\ &= \pi^{2}\left(x^{4} + \frac{1}{2}x^{2}y^{2} + \frac{1}{2}x^{2}y^{4}\right) \\ &\geq 3\pi^{2}\sqrt[3]{\frac{1}{4}x^{4}y^{4}} = 3\pi^{2}\sqrt[3]{\frac{1}{4}\left(\frac{3V}{\pi}\right)^{4}} \end{split}$$

よって、表面領は、 $x^i = \frac{1}{2}x^iy^i$ すなわち $x: y=1: \sqrt{2}$ のとき最小。 問題5

px+qy=c, $x\ge 0$, $y\ge 0$ をみたしながら、 $\angle (x,y)$ が動くとき、関数 $f(x,y)=x^1y$ $+\frac{C}{p}xy$ の最大値、およびそのときの x,yの値を求めよ。ただし、p,q、c は与えられ た正数である。 (舎川大-法・経)

(解答) $\rho x = X$, q y = Y とおくと, $X \ge 0$, $Y \ge 0$ とたる。このとき, $f(x, y) = x^{t}y + \frac{\epsilon}{\rho}xy = \frac{1}{\rho^{t}q}(X^{t}Y + \epsilon XY)$

 $f(x, y) = x \cdot y + \frac{1}{p} x \cdot y = \frac{1}{p^2 q} (X \cdot Y + c X)$ $= \frac{1}{p^2 q} X(XY + cY) = \frac{1}{p^2 q} X(X + c) Y$

 $2X^{2}+(X+c)Y+(X+c)Y$ = $2X(X+Y)+2cY=2c^{2}$ -75, $2X^{2}+(X+c)Y+(X+c)Y$

のとき最大となり、最大値は $\frac{2\sqrt{3}c^2}{9p^2q}$

放物線 $y=kx^{1}$ (k>0) と, 円 $x^{2}+y^{2}=10^{2}$ との交点の 1 つを P(a, b) とする。ただし、a>0, b>0 とする。

(1) 原点Oから点Pに至るこの放物線の弧を y軸のまわりに1回転させたときにできる 器の容積が、最大となるようなa、b、k を求めよ。

(略) (東京理大-薬)

(解答) $b=ka^2$, $a^2+b^2=100$ より $b+kb^2=100k$ ゆえに, $k=\frac{b}{100-b^2}$ 容積をVとすると,

 $V = \pi \int_{a}^{b} \frac{y}{k} dy = \frac{\pi}{2k} b^{\pm} = \frac{\pi}{2} b(100 - b^{\pm})$ $0 < b < 10 \pm 9$ $200 = 2b^{\pm} + (100 - b^{\pm}) + (100 - b^{\pm})$

 $\ge 3 \sqrt[4]{2b^4(100-b^4)^3}$ したがって容積Vは $2b^4=100-b^4$ すなわち $b=\frac{1}{20}\sqrt{3}$ のとき最大。

$$\begin{split} & \mathcal{L} \mathcal{O} \succeq \frac{\alpha}{6}, \ k \!=\! \frac{10}{3} \sqrt{3} + \! \left(100 \!-\! \frac{100}{3}\right) \!=\! \frac{\sqrt{3}}{20} \\ & a \!=\! \sqrt{\frac{b}{k}} \!=\! \sqrt{\frac{10}{3} \sqrt{3} \times \! \frac{20}{\sqrt{3}}} \!=\! \frac{10}{3} \sqrt{6} \end{split}$$

▶以上の n=3 の場合の類題として、そのほか明治大-経営団、長崎大-医・歯園20を参照 していただきたい。

- 21 -

■教材研究─

問題 7 虚様 平面上に、点 $A(\rho \sin \theta, \rho \cos \theta)$ と 証候 $l: x \sin \theta + y \cos \theta + \rho = 0$ が与えられ たき、 Aまでの預難と、 l までの距離が導 しいような点 P の執訴を C とする。ただし、 p>0、 $0<\theta<\frac{\pi}{2}$ である。

(1) Cを原点のまわりにθだけ回転して得られる曲線の方程式を求めよ。

 (2) Cと=軸とによって囲まれた部分の面積をSとする。Sをpとθを用いて表せ。
 (3) pとθが関係 p=cos²θ を満たし、θが 0<0<0<0<0<0<0>元 の範囲を動くとき、Sの最大値を

求めよ。 (版大-理系) (解答) (1), (2) (略)

(3) (2) \natural ϑ $S = \frac{8}{3} \vartheta^{\dagger} \tan^{\dagger} \theta = \frac{8}{3} \sin^{\dagger} \vartheta \cos \theta$ $3 = \sin^{\dagger} \vartheta + \sin^{\dagger} \vartheta + \sin^{\dagger} \vartheta + 3\cos^{\dagger} \vartheta$ $\ge 4 \sqrt{3} \sin^{\dagger} \vartheta \cos^{\dagger} \vartheta = 4 \sqrt{3} \sqrt{\sin^{\dagger} \vartheta \cos \theta}$ $\natural \circ \tau$, $S \bowtie \sin^{\dagger} \vartheta = 3\cos^{\dagger} \vartheta + \hbar \iota \vartheta \circ \vartheta = \frac{\pi}{3}$

のとき最大となり、最大値は $\frac{\sqrt{3}}{2}$

問題8 p, g が 0<p<1, p+g=1 をみたして変

わるとき、(px+q)¹¹の展開式における x² (係数の最大値を求めよ。(九州工大-情報工) (解答) 二項定理により、x²の係数は

 ${}_{11}C_1p^3q^4 = 165p^3q^4$ p>0, $0 , <math>p+q=1 \pm 9$ $24=8p+8p+8p+3q+\cdots+3q$ $\ge 11^{-11}\sqrt{873^2p^3q^3}$

よって、 $165 p^1 q^4$ は 8p = 3q かつ p+q = 1サなわち $p = \frac{3}{11}$, $q = \frac{8}{11}$ のとき最大となり、 最大値は $165(\frac{3}{11})^5(\frac{8}{11})^4 = \frac{5 \times 3^4 \times 2^{24}}{11^{14}}$

問題 9 ===

n人の提供者 A、A、 …… A、Cただし、 本の3 がたの方式で整色を今。 意味 を と A、が対し、この節者 と A が対し、 と A、が対し、この節者 と A が対し、 らしてこの輩や A が対ける。 している 分けなかいのとする。ここで A、以外の数 技術的の対しておいるのであまっただし、引き がはないいのとする。ここで A、以外の数 技術的の対してはいいのとする。 まず、A、は他のとの技術がよりとも 事 P (Co/C/L) と称りものとする。 1 A、が提供るとする。

A₁ が優勝する確率を求めよ。
 A_n が優勝する確率を求めよ。

(3) Anが優勝する確率を最大にする p とその最大値を求めよ。 (大阪市大-環・エ・医)

(解答) (11, (2) (略) (3) (2)より求める確率を $P(\pi)$ とすると、 $P(\pi) = \frac{1}{2} \{1 + p^{n-2}(1 - 2p)\}$

 $P(n) = \frac{1}{2} \{1 + \rho^{n-1}(1-2\rho)\}$ P(n) の最大値を求めるのであるから、 0 としてよい。 $<math>\frac{2\rho + 2\rho + \dots + 2\rho}{(n-2)\theta} + (n-2)(1-2\rho) = n-2$

 $n-2 \ge (n-1) \cdot {^{n-1}}\sqrt{(2p)^{n-1}(n-2)(1-2p)}$ $= (n-1) \cdot {^{n-1}}\sqrt{2^{n-1}(n-2)p^{n-2}(1-2p)}$ よって、P(n) は、2p = (n-2)(1-2p)かはわち $p = \frac{n-2}{2(n-1)}$ のとき最大となり、

$$\begin{split} &\frac{1}{2} \Big\{ 1 + \frac{(n-2)^{n-2}}{2^{n-2}(n-1)^{n-1}} \times \frac{1}{n-1} \Big\} \\ &= \frac{1}{2} \Big\{ 1 + \frac{(n-2)^{n-2}}{2^{n-2}(n-1)^{n-1}} \Big\} \\ &\geq t_{\mathbb{Z}} \stackrel{\wedge}{\to}_{0} \end{split}$$

- 22 -

まとめ

以上のように、大学入試問題では、(相加 平均) & (相乗平均) の利用できる問題がひ じょうに多い。とくに微分法(基礎解析もよ くめて)を利用して、最大値・最小値を求め る応用問題に多く見られる。

ここで、(相加平均) ≥ (相乗平均) の利 用の利点、欠点をまとめておこう。

利点 1. 微分法を用いないので、増減表を 書く手間が省ける。 2. 微分法を用いるよりも、計算がラクであ

る。 3. 以上のことより、比較的短時間で解答で

交点 1. 式の変形に気づきにくい。

 等号の成立を強認しなくてはならない。
 等号が成り立つときの変数の値が定義域 内にないときは、全くムダ(これが最大の 欠点//)。

いずれにせよ、変数が正(または0)で、 和が一定または積が一定のときは一考に値する。

62年の入試問題で、(相加平均)≥(相乗平 均)が利用できる問題を、あと數題あげてお こう。

東北学院大-工图, 茨坡大-教育·農田, 明 治大-経常図, 長崎大-医・歯園, 名古屋工大 -工図

(担文に対する御批判を期待してペンを置く。)

— 23 —

そっくりさん

基本問題の類題は省略して、標準問題の類題のうち、主だったものを 紹介しよう。特に、アンダーラインを付したものに注目して欲しい。

-1 A -

t の関数 f(t) を $f(t)=1+2at+b(2t^2-1)$ とおく。

区間 $-1 \le t \le 1$ のすべての t に対して $f(t) \ge 0$ であるような a, b を座標とする点 (a, b) の存在する範囲を図示せよ。 ('87 東京大)

—1 B ——

 $a\cos 2\theta + b\cos \theta < 1$ がすべての実数 θ について成り立つような点 (a, b) の範囲を図示せよ。 ('87 京都大)

—1 C —

a, b を定数とする。

不等式 $a\sin x - b\cos 2x + 2 \ge 0$ がすべての実数 x に対して成立するための a, b が満たすべき条件を求めよ。また,このような点 (a,b) の存在範囲を図示せよ。 ('88 信州大)

-2 A -

四面体 ABCD において、AB=CD、AC=BD、AD=BC が成立 するならば、三角形 ABC は鋭角三角形であることを証明せよ。

('89 名古屋大)

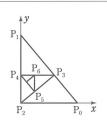
-2B-

 \triangle ABC は鋭角三角形とする。このとき、各面すべてが \triangle ABC と合同な四面体が存在することを示せ。 ('99 京都大)

コメント 40の「三角」不等式の利用が可。

$-3\,\mathrm{A}$

aを正の定数とし、座標平面上に 3点 $P_0(1,0)$, $P_1(0,a)$, $P_2(0,0)$ が与えられたとする。 P_2 から P_0P_1 に垂線をおろし、それと P_0P_1 との交点を P_3 とする。 P_3 から P_1P_2 に垂線をおろし、それと P_1P_2 との交点を P_4 とする。

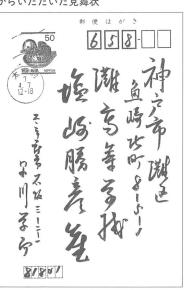


以下同様にくり返し,一般に P_n が得られたとき, P_n から $P_{n-2}P_{n-1}$ に垂線をおろし,それと $P_{n-2}P_{n-1}$ との交点を P_{n+1} とする。

このとき次の問に答えよ。

- (1) P₆ の座標を求めよ。
- (2) 上の操作をつづけていくとき、 P_0 、 P_1 、 P_2 、……、 P_n 、…… はどのような点に限りなく近づくか。 ('79 東京大)

震災の後、早川学而先生からいただいた見舞状



-3 B-

3点 O(0, 0), A(5, 0), B(0, 5) を頂点とする三角形 OAB がある。辺 OA, AB, BO をそれぞれ 2:3 に内分する点を A_1 , O_1 , B_1 とする。同様に三角形 $O_1A_1B_1$ の辺 O_1A_1 , A_1B_1 , B_1O_1 をそれぞれ 2:3 に内分する点を A_2 , O_2 , B_2 とする。このような操作を n 回行ってできる点 A_n , O_n , B_n を頂点とする三角形 $O_nA_nB_n$ を考える。

(1) 三角形 O₂A₂B₂ の頂点の座標は,

$$A_2\left(\frac{77}{5}, \frac{\cancel{\cancel{7}}}{5}\right), O_2\left(\frac{\cancel{x}}{5}, \frac{\cancel{\cancel{x}}}{5}\right), B_2\left(\frac{\cancel{\cancel{7}}}{5}, \frac{\cancel{\cancel{x}}\cancel{\cancel{x}}}{5}\right)$$
 $\textcircled{75}_0$

- (2) 三角形 $O_nA_nB_n$ の面積を S_n とするとき、数列 S_1 、 S_2 、……は初項が $\boxed{ r }$ 、公比が $\boxed{ }$ の等比数列である。
- (3) 点 O_{2n} の x 座標を x_{2n} (n=1, 2, ……) とし, $x_0=0$ とすると, $x_{2n}-x_{2n-2}=\frac{2}{y}\left(\begin{array}{c} \boxed{g} \\ \boxed{f+y} \end{array}\right)^{n-1}$ である。 ('85 共通一次試験)

コメント 3A と同一問題(または酷似問題)が大正時代に東京帝國大学(東京大学の前身)に出題されたことを何かの本で読んだ記憶がある。

4 A

方程式 $x^2-3y^2=1$ …… ① を満たす整数の組 (x, y) を求めることを考える。(以下この方程式の整数解を単に解と略称する。)

(中略)

いま任意の正の解(x, y), (x>0, y>0) をとる。

(中略)

- (2) $\lceil x' = 2x 3y, \ y' = 2y x \$ とおくとき、(x', y') も解である。」
- (4) 「それで、任意の正の解 (x, y) から出発して、(2) における (x', y') を求める操作を順次行なうことによって負でない解 (1, 0) に達する。」

(以下略)

('67 京都大)

-4B

$$A = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}$$
 とする。

$$(1) \quad {x \choose y'} = A {x \choose y} \quad \text{To,} \quad x^2 - 3y^2 = 1, \quad x > 0, \quad y \ge 1 \quad \text{To bot},$$

 $x'^2-3y'^2=1$, $0 \le y' < y$ が成立することを示せ。

(2) x, y が $x^2-3y^2=1$ を満たす自然数ならば,ある自然数nをとると $\begin{pmatrix} 1 \\ 0 \end{pmatrix} = A^n \begin{pmatrix} x \\ y \end{pmatrix}$ となることを示せ。 ('88 <u>京都大</u>)

4 C

整数 x, y が方程式 $x^2-3y^2=1$ …… ①

を満たすとき、 $\binom{x}{y}$ を①の整数解と呼ぶ。

行列 $A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$ とするとき、次の問いに答えよ。

- (1) Aの逆行列 A-1 を求めよ。
- (2) $\binom{a}{b}$ が ① の整数解のとき、 $\binom{c}{d} = A^{-1} \binom{a}{b}$ も ① の整数解であることを示せ。
- (3) $\binom{a}{b}$ は a>0, $b\ge 0$ なる ① の整数解とし、 $\binom{c}{d}=A^{-1}\binom{a}{b}$ とする。このとき c>0, d< b となることを示せ。また、d< 0 ならば b=0 であることを示せ。
- (4) $\binom{a}{b}$ が a>0, b>0 なる ① の整数解のとき,ある自然数 n に 対して $\binom{a}{b}=A^n\binom{1}{0}$ が成り立つことを示せ。 ('00 岡山大)

5 A

x=3 のとき極小値 0 をとる 3 次関数 f(x) があり、曲線 y=f(x) 上の点 (1,8) における接線が (3,0) を通る。

- (1) f(x) を求めよ。
- (2) 曲線 y=f(x) と x 軸で囲まれる図形の面積を求めよ。

('78 大阪大)

-5B-

関数 $f(x) = ax^3 + bx^2 + cx + d$ は x = 3 のとき極小値 0 をとり、曲線 y = f(x) 上の点 (1, 8) における接線が (3, 0) を通るとする。このとき、

- (1) 定数 a, b, c, d の値を定めよ。
- (2) y=f(x) とx軸とで囲まれる部分の面積を求めよ。

('89 大阪大)

コメント 大阪大の先生曰く,「10年以上前のものは時効」とのこと。

-- 6 A -

- (1) 1円, 5円, 10円の硬貨をとり混ぜて合計 10n円にする仕方は $(n+1)^2$ 通りあることを証明せよ。ただし、nは正の整数とする。
- (2) さらに、50円の硬貨を加えて、これら4種類の硬貨をとり混ぜ て合計1000円にする仕方は幾通りあるか。 ('71 大阪大)

-6 B ---

nは正の整数とする。

- (1) 10円玉と50円玉を組み合わせて合計 $50 \times n$ 円にするには (n+1) 通りの方法があることを示せ。
- (2) 10円玉, 50円玉, 100円玉を組み合わせて合計 $100 \times n$ 円にするには何通りの方法があるか。
- (3) 10円玉,50円玉,100円玉,500円玉を組み合わせて合計1万円 にするには何通りの方法があるか。 ('88 大阪大)

コメント 10年以上経つと物価が10倍以上?

-7A-

a = -1 とするとき

式 $\frac{(x-y+a)(x^2+y^2+bxy-1)}{x+ay-1}$ が x, y に関する整式となるよう

な定数 a, b を求め、かつその整式をかけ。

('60 大阪大)

 $-7 \, {\rm B} -$

 $\frac{(x-y+a)(x^2+y^2+bxy-1)}{x+ay-1}$ が x, y に関する整式となるとき,

定数 a, b の条件を求め、その整式も示せ。

('95 法政大)

コメント 7A は筆者が大学を受験したときの問題である。

-8A -

A, Bの2人がじゃんけんをして、グーで勝てば3歩、チョキで勝てば5歩、パーで勝てば6歩進む遊びをしている。1回のじゃんけんでAの進む歩数からBの進む歩数を引いた値の期待値をEとする。

- (1) Bがグー, チョキ, パーを出す確率がすべて等しいとする。Aがどのような確率でグー, チョキ, パーを出すとき, Eの値は最大となるか。
- (2) Bがグー、チョキ、パーを出す確率の比が a:b:c であるとする。Aがどのような確率でグー、チョキ、パーを出すならば、任意の a、b、c に対し、 $E \ge 0$ となるか。 ('92 東京大)

じゃんけんをして勝者が出し方によって定まった歩数だけ進む遊びがある。グーで勝ったときに3歩、チョキで勝ったときに6歩、パーで勝ったときに5歩進むとし、負けた場合もしくはあいこの場合には動かないものとする。

いま、A, B 2 人があらかじめ決められた確率に従ってグー、チョキ、パーを出すものとする。Bがどのような確率に従ってグー、チョキ、パーを出しても、1 回のじゃんけんでAの歩数の期待値がBの歩数の期待値よりも小さくならないようにしたい。Aがグー、チョキ、パーを出す確率をどのように決めればよいか。

('01 名古屋市立大)

— 9 A —

数列 { an } は関係式

 $a_1=2$, $(a_{n+1}-a_n)^2=2(a_{n+1}+a_n)$, $a_{n+1}>a_n$ ($n=1, 2, 3, \cdots$) によって定まっている。

- (1) a2, a3, a4 を計算せよ。
- (2) 一般項 a_n をnの式で表せ。
- (3) $\lim_{n\to\infty} (\sqrt{a_{n+1}} \sqrt{a_n})$ を求めよ。

('01 広島大)

— 9 B —

数列 $\{a_n\}$ は $a_1=1$, $(a_{n+1}-a_n)^2=a_{n+1}+a_n$ $(n=1, 2, 3, \dots)$ を満たしている。

- (1) a2 を求めよ。
- (2) $b_n = a_{n+1} a_n$ ($n=1, 2, 3, \dots$) とするとき、数列 $\{b_n\}$ は公差が 1 の等差数列であることを示せ。
- (3) 数列 { a_n} の一般項を求めよ。

('01 大阪市立大)

-10 A -

次の等式を満足する x, y の関係をグラフにかけ。

 $\log_{1+y} x + \log_{1-y} x = 2\log_{1+y} x \log_{1-y} x$

('61 九州工業大)

-10 B -

aを任意の実数とするとき, 2つの方程式

 $\log_{1+y} x + \log_{1-y} x = 2(\log_{1+y} x)(\log_{1-y} x), x+y=a$ を同時に満足する点(x, y)の個数を調べよ。 ('95 明治薬科大)

コメント 10 B の問題を見た途端,見覚えのある式であり,グラフの形も覚えていた。大学名,出題年は覚えていなくて10 A の問題を見つけるのに苦労した。

- 11 A -

n は正の整数とする。 n 次式 x^n を 2 次式 $f(x) = x^2 - ax + b$ で割った余りを $r_n x + s_n$ とおく。

(1) すべての正の整数 m, n について次の式が成り立つことを示せ。 $r_{m+n} = r_m s_n + r_n s_m + a r_m r_n$,

 $S_{m+n} = S_m S_n - b \gamma_m \gamma_n$

(2) $(a-x)^n$ を f(x) で割った余りを $t_n x + u_n$ とおくとき次の式が成り立つことを示せ。

 $t_n = -r_n$, $u_n = ar_n + s_n$

('88 大阪大)

— 11 B –

aを0でない定数とする。nを正の整数として、n次式 x^n を1次式 f(x)=x-a で割った余りを r_n とおく。そのとき、すべての正の整数 m、n に対し、 r_{m+n} と r_m 、 r_n との間には関係式 $r_{m+n}=7$ が成り立つ。

次に、n次式 x^n を 2次式 $g(x)=(x-a)^2$ で割った余りを s_nx+t_n とおく。そのとき、すべての正の整数 m, n に対し、 s_{m+n} と s_m , s_n , t_m , t_n との間には関係式 $s_{m+n}=1$ が成り立ち、また t_{m+n} と s_m , s_n , t_m , t_n との間には関係式 $t_{m+n}=1$ が成り立つ。 ('94 明治薬科大)

— 12 A —

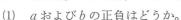
x, v に関する三つの1次方程式

$$ax + y - 2b - 1 = 0$$
 ①

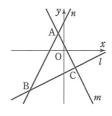
$$x + ay + 2ab = 0$$
 ②

$$ax - y + b - 1 = 0$$
 3

のグラフをえがいたところ,図の3直線l,m,nになった。このとき,つぎの各問に答えよ。



- (2) *l*, *m*, *n* はそれぞれ ①, ②, ③ のどれを表わすか。
- (3) l, m, n の 2 本ずつの交点を図のように A, B, C と名付けるとき, Aの x 座標が -1, Cの y 座標が -3 であるとすれば, a, b の値はいくらか。
- (4) (3) の場合, △ABC の面積はいくらか。 ('64 立命館大)



-12 B-

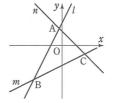
3つの1次方程式

$$ax + y - b + 2 = 0$$
 ①

$$x + ay - 2b - 1 = 0$$
 ②

$$2ax - y - b + 1 = 0$$
 3

は図の直線l,m,nを表す。



- (1) ①, ②, ③ がそれぞれ l, m, n のうちのどの直線の方程式であるか。また、係数 a, b がどのような範囲にあるか。
- (2) 更に、図の点Aのy座標が3、点Cのx座標が4であるとき、a, b の値を求めよ。 ('94 立命館大)

13 A

テーブルの上に、1から5までの数字が書いてある札が1枚ずつあり、5人の人が順に1回だけサイコロをふる。出た目と同じ数字の札があれば、その札の数をその人の得点とし、その札をテーブルの上から取り除く。同じ数字の札がなければ6を得点とする。

- 最初の人の得点の期待値は
- (2) 3番目の人の得点が1である確率は $\frac{0}{|x_{j+1}|}$ であり,また, 6 である確率は $\frac{0}{|x_{j+1}|}$ である。
- (3) 5番目の人が得点したとき、テーブルの上の札が全部なくなる 確率は $\frac{2}{2}$ である。
- (4) 5人の得点がすべて異なる確率は デッ である。

('92 センター試験

— 13 B —

数直線上の点Qが最初に原点にあるとする。サイコロを2 回投げ,点Qの位置を数直線上を正の向きに第1 投の目の数だけ進め,負の向きに第2 投の目の数だけ進める試行を考える。このときの点Qの位置を確率変数Xとする。

- (1) Xの期待値 E(X) と分散 V(X) を求めよ。
- (2) 上の試行を6回繰り返すとき,点Qが29にある確率,および28にある確率をそれぞれ求めよ。 ('92 東北大)

コメント この年, 13 A を選択して正解した東北大の受験生は, 13 B で自信を持てたのではなかろうか。

- 14 A -

y 軸上の正の部分に中心をもち、放物線 $y=x^2$ と 2 点で接する円の列 O_1 , O_2 , ……, O_n , …… を次の条件を満たすように定める。

- [1] O_1 の半径は1である。
- [2] $n \ge 2$ のとき O_n は O_{n-1} に外接し, O_n の中心の y 座標は O_{n-1} の中心の y 座標より大きい。

このとき、円 On の方程式を求めよ。

('88 大阪大)

— 14 B —

放物線 $y=x^2$ に 2 点で接する半径 1 の円 C_1 を描く。この上方に円 C_1 に外接し,かつこの放物線に 2 点で接する円 C_2 を描く。以下同様に円 C_{n-1} の上方に円 C_{n-1} に外接し,この放物線に 2 点で接する円 C_n を描く。このとき,次の問いに答えよ。

- (1) C2 の半径を求めよ。
- (2) C_n の半径を求めよ。

('88 三重大)

- 15 A -

xy 平面に、3 次曲線 $y=x^3-x$ と点Pがある。

- (1) Pを通るCの接線の個数が1となるようなPの範囲を図示せよ。
- (2) (略)

('88 横浜国立大)

-15 B -

関数 $f(x)=x^3-x$ について、次の各問いに答えよ。

- (1) 曲線 y=f(x) の接線で、点 (p, q) を通るものは1本または2 本である。このような点 (p, q) の存在範囲を図示せよ。
- (2) (略)

('88 神戸大)

— 16 A -

三角形 ABC において,辺 AB,BC,CA をそれぞれ 2:1 に内分する点を A_1 , B_1 , C_1 とし,また線分 A_1B_1 , B_1C_1 , C_1A_1 をそれぞれ 2:1 に内分する点を A_2 , B_2 , C_2 とする。このとき,三角形 $A_2B_2C_2$ は三角形 ABC に相似であることを示せ。 ('88 京都大)

— 16 B —

 \triangle ABC の各辺 AB, BC, CA を m:n に内分する点をそれぞれ A₁, B₁, C₁とする。更に \triangle A₁B₁C₁の各辺 A₁B₁, B₁C₁, C₁A₁を m:n に内分する点をそれぞれ A₂, B₂, C₂とする。

- (1) m: n=2:1 ならば A_2B_2 は AB と平行であることを示せ。
- (2) A_2B_2 が BC と平行となるように m:n を定めよ。

('88 新潟大)

— 17 A -

△ABC において、次の関係が成り立つことを証明せよ。

$$\frac{1}{2}\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \leq \frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} < \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

('79 近畿大)

-17 B -

△ABC において BC=a, CA=b, AB=c とするとき

$$\frac{1}{2}\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \leq \frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} < \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

であることを証明せよ。

('81 広島経済大)

—18 A -

- (1) a, b を正の数とするとき,不等式 $\frac{b}{a} + \frac{a}{b} \ge 2$ を証明せよ。
- (2) a_1, a_2, \dots, a_n をn個の正の数とするとき、不等式 $(a_1 + a_2 + \dots + a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right) \ge n^2$

を数学的帰納法によって証明せよ。

('88 大分医科大)

-18 B —

- (1) a, b が正の実数のとき, $\frac{a}{b} + \frac{b}{a} \ge 2$ を証明せよ。
- (2) x_1 , x_2 が正の実数のとき、 $(x_1+x_2)\left(\frac{1}{x_1}+\frac{1}{x_2}\right)$ の最小値を求め よ。また、最小値をとるのは x_1 と x_2 がどのような場合か。
- (2) x_1 , x_2 , ……, x_n ($n \ge 2$) が正の実数のとき,

$$(x_1+x_2+\cdots\cdots+x_n)\left(\frac{1}{x_1}+\frac{1}{x_2}+\cdots\cdots+\frac{1}{x_n}\right)$$

の最小値を推定し、そのことを数学的帰納法で証明せよ。

('88 香川大)

-19 A -

1つの平面内にある,幾つかの0でないベクトルからなる集合Sが条件 "a, b がSのベクトルであれば, $\frac{2(a,b)}{(b,b)}$ は整数である。" を満たしているという。ただし,(a,b) 等はベクトルの内積を表す。

- (1) S の 2 つのベクトルの間の角は、 0° 、 30° 、 45° 、 60° 、 90° およびこれらの補角のうちの1 つであることを示せ。
- (2) (1) において、角が 0° , 30° , 60° の場合には2つのベクトルの長さの比はどうなるか。
- (3) 30° の角をなすベクトル a, b を含み、12 個のベクトルからなる集合 S の例を図示し、各ベクトルを a, b で表せ。('76 京都大)

-19 B -

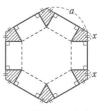
 \angle B が鋭角である \triangle ABC において,頂点Aから辺BC またはその延長上に垂線を引き,交点をHとし,また,頂点Cから辺AB またはその延長上に垂線を引き,交点をKとする。

 $\frac{2\mathrm{BH}}{\mathrm{BC}}$, $\frac{2\mathrm{BK}}{\mathrm{BA}}$ がともに整数であるとき, \triangle ABC はどのような三角形であるか。 $(\red{'76}$ 大阪大)

- 20 A -

右図のように、1辺の長さaの正六角形の紙から斜線部分を切り取り、残りの部分を折り曲げて正六角柱のふたのない箱を作りたい。

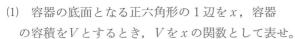
- (1) 箱の容積 V(x) を求めよ。
- (2) V(x) を最大にするxの値を求めよ。



('88 富山大)

$-20 \; {\rm B} -$

1 辺の長さが α の正六角形のブリキ板がある。 これを図中斜線部のように6 隅から合同な四角形 を切り取って破線部を折り曲げ,直正六角柱状の 容器を作る。次の問いに答えよ。

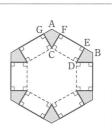


(2) 容積Vを最大にする容器の高さと、そのときのVの値を求めよ。 ('88 鳥取大)

– 20 C —

1辺が 10 cm の正六角形がある。右図の線分 AB がその1辺である。図中の四角形 AGCF は条件 AG=AF, CG=CF,

∠AGC=∠AFC=90°を満たし、四角形 CDEF は長方形である。図中の影の部分の 6 つの四角形はすべて四角形 AGCF に合同であ



る。これら影の部分の6つの四角形を切り取った後、点線部をおりまげて底面が正六角形の直角柱の容器を作り、その容積をVとする。次の問いに答えよ。

- (2) Vを最大にするxの値を求めよ。

('00 東北学院大)

クイズ

次の問題は入試問題です。出題校は?
(その1) 次の 🔙 の中に適当な数を入れよ。
点(10, 2), (2, -2) を通る直線がある。
(1) この直線の方程式は $y=$ $x+$ である。

- (2) この直線の勾配は である。
- (3) この直線がx軸と交わる点の座標は \square である。
- (4) この直線がy軸と交わる点の座標は である。
- (5) この直線とx軸に関して対称な直線の方程式はy= x+である。

(その2) 次の函数のグラフの大体の形をえがけ。

- 1. y=2(x-1) 2. $y=(x-1)^2$
- 3. $y=2^{x-1}$
- 4. $y = \log_2(x-1)$
- 5. $y = \sin \pi x$

(答は102ページ)

面白い(?)問題

答を出すと、つい吹き出したくなる問題をいくつか紹介しよう。(答略)

1

次の関数のグラフの概形を同じ座標平面に描け。

- (1) $v=9 (|x| \le 1)$
- ② $y = -x^2 + 6|x| + 4 \ (1 \le |x| \le 6)$
- ③ $y=2^{\frac{|x|}{3}} (|x| \le 6)$
- (4) $x^2 + (y-5)^2 = \frac{1}{4}$
- (5) $y = -\sin(\frac{\pi}{2}|x|) + \frac{9}{2} (2 \le |x| \le 4)$

('86 秋田大)

(ヒント カワイイネ。)

$$f(x) = \begin{cases} x^4 - x^2 + 6 & (|x| \le 1) \\ \frac{12}{|x| + 1} & (|x| > 1) \end{cases}$$

$$g(x) = \frac{1}{2}\cos 2\pi x + \frac{7}{2} (|x| \le 2)$$

とする。

2曲線 C_1 : y=f(x), C_2 : y=g(x) のグラフの概形を同じ座標平面上にかけ。 ('00 静岡大)

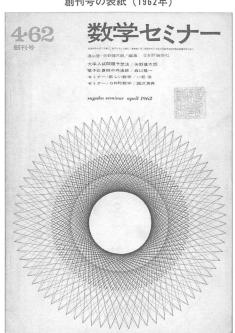
(ヒント 静岡大から見える(?))

領域 D₁, D₂ は、それぞれ次の不等式によって示されるものとする。

$$D_1: \begin{cases} x^2 + y^2 \le 25 \\ (|x| - 2)^2 + y^2 \ge 1 \end{cases} \qquad D_2: \begin{cases} y < \frac{1}{8}x^2 - \frac{5}{2} \\ y > \frac{1}{4}x^2 - 3 \end{cases}$$

このとき、 D_1 から D_2 を除いた残りの領域 D_3 を、斜線を入れて図 ('70 奈良教育大) 示せよ。

(ヒント ボク, 海へ行って来たの?)



創刊号の表紙(1962年)

クイズの答

いずれも東京大

(その1)…昭和25年 共通問題

(その2)…昭和24年 解析 I

お寄せいただいたお言葉

失礼をも顧みず、交友関係の古い方からの順にさせていただきました。

塩﨑君と私

吉田 秀彦

塩﨑君と私は、大教大附属小学校1年生から天高3年生までの12年間 同窓で殆ど同級生であった。私は一介の目医者で、私の父も眼科開業医 で、塩﨑君に「よし、ダメか」(著者注:吉田眼科)と言われ、また 「ヨッシン」と呼ばれて, 互いに個性は全く異なるものの, 何故か仲良 く一緒によく遊んだ。私は彼を「シオザキ」とか「シオ」と呼んでいた し、今もそう呼んでいる。算数だけは当時よりずば抜けていた。彼は今 も小学生の頃と姿は殆ど変わらない。皺が増え、メガネを嵌めるように なり、多少思慮深くなり、大病の後少し痩せた程度である。彼のお父さ

小学6年生のときの筆者 小学6年生のときの塩﨑君

左:塩﨑君,右:筆者

が阪大で私は京大で異なったが、それでもよく一緒に遊びに行った。大 学1年の夏、私が自動車免許証を貰った翌日、彼がナビゲーターをして 呉れると言うので、初めての遠乗りに淡輪まで二人で往復したが、彼は 車に乗って間もなくから寝てしまい、帰るまで殆ど寝ており、初心者の 車に乗る恐怖を全く知らなかった。私の運転を信用していたとは思われ ないので、車音痴で乗り物に乗ると直ぐ寝てしまうのである。彼は今で も車の免許は取っていないと思う。その夏、彼と二人で北海道へ列車で 旅行した。北海道の列車の中で、横浜の跡見女子短大の4女学牛の旅行 グループと一緒になった。彼は好機と舞い上がり、我々の予定をこまめ に変更して、行く先々で「偶然にも」彼女等のグループと出会えるよう に手配した。私も嫌ではなかったが、相手は迷惑であったかも知れない。 網走の湖では2艘のボートに2人ずつの女学生を乗せて漕ぎ出したが, 彼は日暮れになっても帰って来ない。漸く暗くなって皆フラフラになっ て戻って来た。彼は大いにサービスして、沖まで漕ぎに漕ぎ、戻って来 た時にはズボンのお尻は破れ、パンツも破れ、お尻の皮も破れて血が出 ていた。部屋に戻ってから、突き出させたお尻の傷に持参の赤チンを塗 りガーゼを当てて手当てした。別の温泉では、深夜になると混浴の湯船

に女性や女中さん達が入りに来ると聞いて、彼は再び温泉に入りに行ったが、またなかなか戻って来ない。心配で浴室へ見に行ったら、湯にのぼせて真っ赤になって伸びていた。女性が来るのを今か今かと待っていて、湯中りしたのである。ついに女性は来なかった。

これらのエピソードは塩﨑らしく微笑ましくも懐かしい。彼は率直で素直である。並の男よりスケベでないのは皆さん御承知の通りである。彼の駄洒落には些か辟易するが,彼は他人の悪口は言わない。今は偉い学校の先生で数学の権威であるそうだが,私には愛すべき友である。彼の御子達は東大・京大・阪大卒だそうで,親父としての彼の子供達に対する教育も素晴らしかったのであろうが,彼の頭の良さが遺伝したのだろう。羨ましく思う。

塩﨑君とは大学卒業後,互いに忙しく一時暫く疎遠になって居たが,その間,大病で阪大病院に入院したらしい。お見舞いに行けなかったのが残念で,今も私の心に小さな棘になって刺さって居る。15年前に私が大阪の病院に勤めるようになって,再び塩﨑君と頻々会う機会が増えた。何でも忌憚無く話し合える幼なじみの彼と会えることは私にとって幸せである。

私の幼い頃、若い頃、学校生活にも、臨海学校にも、大学生になって行った志賀高原の空腹で侘しかった二人きりの秋のキャンプにも、傍らに若き「シオザキ」が居た。思い出は懐かしく切なくさえある。今も、少し萎びた「シオザキ」に年に何回か会う。今回、「シオザキ」が還暦記念の自費出版をすると言う。それに私の駄文を戴せて呉れると言う。場違いな文であろうが嬉しく思う。私に良い思い出がまた一つ増えた。塩﨑君、いつまでも健康で長生きして、時々また駄洒落を元気に聞かせて呉れ給え。

(大阪赤十字病院 眼科部長)

多賀谷 疆

塩﨑先生(以後塩﨑さんと呼ぶ)と数学入試問題を介してのお付き合

いは41年前の昭和35年の3月から始まっている。

その前に、昭和32年の4月に教室で出会い、1年間新米教師と生徒というありきたりの縁はあったものの、強烈な印象をもったのは上に述べた昭和35年の3月のある日のことである。

その日は日直で、天王寺高校(以後天高という)の事務室にいて、退 屈な時間を過ごしていたのだが、塩﨑さんが学校に遊びにきていたらし く、事務室にいる僕を見つけて入ってきた。

会話を明確にするために、この年の阪大入試問題共通の2と、数学 I代数、数学 IIの2を書いてみよう。

共通問題

2 二つの対角線によって四つの等積な三角形に分けられる凸四角形は どんな四角形か。理由をつけて答えよ。

数学 I 代数, 数学 II

2 三次方程式

 $x^3 + Ax^2 + Bx + 1 = 0$

が実根(等根も含める) α , β , γ をもち, かつ, $\gamma = -\beta$ であるとき,

- (1) A, B はどのような条件を満足するか。
- (2) $D=(\alpha-\beta)^2(\alpha-\gamma)^2(\beta-\gamma)^2$ が最小となるような A, B の値を求めよ。

少々意地悪い質問であったが、「全部できた」と言われて「本当かな?」という気持ちである。

「共通の 2 は平行四辺形でしょう。数学 I 代数,数学 II の 2 の (1) は 根と係数の関係,(2) は D=0 のときだから, $\alpha\beta\gamma=-1$ で, $\alpha\beta\gamma=0$, $D=(\alpha^2-\beta^2)^2\cdot 4\beta^2$ だから, $\alpha=\pm\beta$ で,(1) から出ます」

「ところで、平行四辺形は十分条件を確かめたかね」

「学校の幾何の時間で, どんな形かは必ず逆をいえと言われていましたから」

もう何も言うことは無かった。

「ところで、数学 I 代数、数学 II の問題で、D と書いてあるのは何故だろう」「生徒の解答が作りやすいからでしょう」「2 次方程式のD は何を意味する?」「勿論判別式でしょう」「それを 2 根 α 、 β で書くとどうなる」「ええっと、 $(\alpha-\beta)^2$ かな」「だから、3 次方程式の判別式なんだよ。それにしてもD を展開しなかったとは大したもんだね。それだけの実力があれば数学科に進むといいね」これは蛇足である。

以後、塩﨑さんは天高で2年後輩の女性と結婚し、2男1女の父となった。ちなみに、御令室は小生が天高で3年間担当した学年の卒業生で、同じく阪大に進んだ才媛であったが、キューピッドの餌食(?)となり、御長男は灘高1年のとき、御次男は灘高2年のときに教室で出会い、3人(御長女を含む)は小さいとき正月の3日に我が家の悪童とさまざまな遊びをした仲である。そのうち、塩﨑さんも灘校にやってきて楽しい年月を共にし、この関係は今も続いている。

塩﨑さんが入試の鬼といわれる消息はどなたかがお書きになるであろう。「栴檀は二葉より芳し」の事実を記した次第である。

塩﨑勝彦君のこと

福岡 邦夫

いま手元には昭和32年度大阪府立天王寺高等学校時代の私の「成績通知表」があります。これによりますと数学の成績は「代数95点」「幾何92点」と記入されています。恐らく同級生であった塩﨑君とはそれほど遜色の無い成績ではなかったかと自負しております。このときに代数を教わったのが後に灘中高で教鞭をとられた多賀谷先生でした。今でも鮮明に覚えていることは一年生の最初の授業で多賀谷先生が「√2 は無理

数である」ことをチョーク一本で鮮やかに証明されたことでした。そして中学校の数学との大きな違いに驚いたのでした。これが縁で数学好きになったのかも知れません。このスタートの時期においては塩﨑君とは横一線に並んで新幹線の線路を走っている積りでした。しかしながら現在の結果が示すとおり彼は新幹線の線路を走りつづけ、私は支線に移りやがては廃止寸前のローカル線にいることに気づいている次第です。

私は彼の結婚式の司会を務めました。それをいいことに会社帰りに大阪環状線の寺田町駅で途中下車し「腹が減った。何か食べさせて。」と時間構わず新婚生活を邪魔したものでした。天高の後輩でもある奥様はさぞかし箒を逆さにして険しい顔をしておられたことと今ごろ気がついている次第です。塩﨑君のご両親は当時家内工業規模でお二人揃って黙々と敷地内の工場で働いておられました。その規模も急速に拡大されていきました。いつお邪魔しても気安くお迎え頂きいろいろお話をさせていただいたものでした。大柄なお父様は戦争の為に耳を多少ご不自由されていたようでしたが朗らかに幾分大きめの声で応対していただき、お母様も教育にご熱心で恐らくその一生を三人の息子さんの成長に捧げられたことと思っております。塩﨑君の温厚で――言葉を選び直すならば

優秀な学生がそのまま教壇に立っている――勉強一筋の人生はこのような真面目一筋の人生を歩まれたご両親の背中を手本にされていると思っています。塩﨑君は天高の後輩の奥様との間に誠に優秀な二男一女を儲けられ(決して結婚式におけるように下駄をはかせた評価ではありません)それぞれ立派に活躍されています。これも塩﨑君ご夫妻の真面目な生活態度を手本とされた結果だと思います。誠に垂涎の的であります。

塩﨑君の結婚披露宴のときの筆者

塩﨑君もめでたく還暦を迎えられる年齢となりました。還暦といっても現代においてはまだまだ老齢の部類には程遠く、これからも次代を担う若者の教育に専心されることを願っております。それには塩﨑君が健康であることが最も肝要であります。君の長寿を願うのはご家族はもちろん、多くのあなたの周りにいる人々の願いでもあると思いますから。

職業が数学の教師、趣味が数学。ならば横合いからあれこれ言うことは何もありません。でも人生には限りがあります。家にあって君を支えてこられた奥様をより一層大切にされ、共に過ごす時間を今まで以上に増やしてください。「数学が愉しかった」の人生では一人称の人生になってしまいます。「わたしたち愉しかった」の人生をともどもに歩んでください。近いうちに乾杯といきましょう。

塩﨑勝彦先生と教え子の私

山本 景一

塩﨑先生が初めて教壇に立たれて、数学を教えられたときの生徒が私たちです。私たちは高校時代に塩﨑先生を、『アトム先生』と呼んでいました。それは、髪の毛の左右が鉄腕アトムの髪型(?)のように跳ね上がっていたからです。現在も寒~い『おやじギャグ』を連発されますが、高校当時も同じです。『ギャグ』で思い出されるのが、ある日、先生よりも先に私がギャグを言い、学級で笑いを取ったら、今日はまだ先生がギャグを言ってないからという理由で、出席簿で頭をたたかれたことです。

数学での思い出といったら、ある因数分解の宿題の1問が解けず、次の日、廊下で出会った塩﨑先生に質問し、問題を言い出したら、「根の公式で解け。」と一言で終わり、足を止めることもなく立ち去られました。少し時間がかかりましたが、しっかり解けたことを覚えています。

数学の指導だけでなく、水泳クラブやテニスクラブでも熱心に指導さ

れておられた印象があります。塩﨑 先生に担任をしていただいたことの ない私が今もお付き合いをさせてい ただいているのは、高1のときの私 たちの担任はお体が弱く、遠足の付 き添い等はいつも塩﨑先生だったこ とや、寺田町の家へ友達と一緒に遊 びにもいかせてもらったこと等が要 因でしょう。引っ越しのお手伝いに 行き、麻雀の置き場所はしっかり覚 えて帰ったりもしました。

私は小学校の先生になり、日数教 全国大会へ行ったとき、山形の会場 で、大阪でしばらくお会いしていな かった塩﨑先生にお会いし、夜にご 馳走になったこともありました。

「攤校の塩﨑ですが」と突然お電話をいただき、「小学校で、3÷0 や0÷3 はどのような取り扱いをしているのか」とか、「小学校で、緯度、

左:塩崎先生,中:筆者,右:先生の 御長男(毅彦君)

昭和45年,同窓会で服部緑地へ行ったとき

経度は習うのか」などと尋ねられたことがありました。職場で『落ちこぼれ』が話題になっていた頃、「灘では?」と質問し、「灘中にもいる」と先生からお聞きしたことを職場で話したことがありました。

塩﨑先生のご自宅で、高校時代の先輩にお会いしたことがあり、一緒に若狭方面へ泳ぎに行ったり、万博へ行ったりし、今もお手紙をいただいています。塩﨑先生の教え子ということで、ある算数・数学の研究会で出会った府立高校の数学の先生に親しくしていただき、私の研究にコメントをいただきました。このように、いろいろな人とのつながりもあります。

上の写真に幼い頃の息子さんが写っていますが、私は「蛙の兄ちゃん」と彼に呼ばれていました。おいしいケーキにこだわっている娘さん

がおられるので、お勧めのケーキ店を見つけてはキープしておき、お宅 へお邪魔するときには、持参するように決めています。

塩﨑先生との付き合いを回顧する原稿依頼をいただき、身に余る光栄と感じつつも、まとまりのない文章になってしまいました。私サイドの回顧になっていますが、「 $3\div 0$ 」の話一つを取ってみても、塩﨑先生サイドでいろいろと思い出されることがおありと推察されます。

あの『駄洒落』に毎日耐えておられる奥様といつまでもお幸せに。還 暦のお誕生日を心よりお祝い申し上げます。

(高石市立清高小学校 教頭)

塩﨑先生との思い出

石山 清

最初の出会いは昭和42年4月、大阪府立勝山高等学校に転勤したとき です。それから30有余年お付き合いをさせていただき、先生もお元気に て還暦を迎えられる由、誠におめでたい事です。さてその間の印象深い 事柄を思い出すまる記します。出会いから二、三ヶ月して皆多忙の中、 数学の輪読会を5人で行うことになり、私が担当のときは、彼によきア イデアーを出してもらい、助けてもらいました。又私がクラス担任をし ていたとき、ある優秀な生徒(著者注:次ページの小西君です。)が体 調不良にて休学、留年。その学年に先生がおられ、事情を話し、その生 徒を指導してもらい、才能を伸ばしていただき、現在、奈良県立医科大 学の教授で活躍しています。先生のきめ細やかな忍耐強い御指導を感謝 しています。更に私が進路指導部長のとき、過労にて胃潰瘍で苦しんで いたとき、先生が快くその仕事を引き受けて、滞りなくしていただきま した。私に気を使わせず彼一流のポーズで代行してもらった事、有難く 思っております。次の事も思い出します。学校にて早朝又は放課後、生 徒の数学の質問に積極的に応じておられました。おそらく今でも行って おられる筈です。これは意欲のある生徒には実によい方法で、この様な 先生に接した生徒は幸福だったと思っています。然し実力がなければ出来ないことで、先生の人物と実力が伴った証拠でしょう。私がいた学校の若い先生にも、大阪高等学校数学教育会にて色々と御指導、助言していただきました。先生とこのように長くお付き合い出来たのは、先生のお人柄と思われます。他人の事を悪く言わない、謙虚、常に笑顔で接し、世話好きで、あったかみを感ずる人であります。いつまでもお元気にて日本の教育のためお尽し下さる事を心より祈っております。一つ忘れてならないのは、御令室様のゆきとどいた健康管理等があればこそ、先生が仕事に集中出来るのだと思います。最後に私はこの3月私立学校を退職しました。常日頃、私が生徒に接する心構えの一端をこゝに御披露して筆を置きます。何か御参考になれば幸甚です。

- ◎教育とは流水に文字を書くように果てしない業である。だがそれを厳 壁を刻むような真剣さで取り組まなければならない。(森信三語録よ り)
- ◎如何に生徒にやる気をおこさせ、生徒の DNA を ON にしてやる様 努力してやる。(村上和雄「生命の暗号」ケンマーク出版)
- ◎「念ずれば、花ひらく」(坂村眞民詩集より)

(元 履正社高等学校 教員)

おちこぼれ

小西 登

「よお、ひとつも変わってないな!」「いやー、先生こそ昔のままですよ」実に30年ぶりの再会であった。大阪某所で府立勝山高校時代の恩師である塩﨑勝彦、石山清両先生と私の3人は会食をともにしながら昔話しに花を咲かせていた。後日、塩﨑先生から還暦記念誌を出版するから勝山高校の思い出話を書くように仰せつかりましたが、正直なところ当時の正確な記憶は薄れており、私が細々と問題を起こしたことだけが頭をよぎりました。

私は昭和42年に勝山高校に入学し、1年生を3回、2年生を2回在籍 したあげく退学したいわば問題児でありました。入学直後から学校を休 んでは当時校則で禁止されていたバイクに跨って小旅行を繰り返してい ました。たまに登校するものの授業についていけるはずもなく、当たり 前のことながら疎外感は募る一方で、ますます悪循環に陥っていました。 初めての留年は現実に起こるとショックでした。学校からは足が遠のく 一方だったのですが、以前の担任であった石山先生のお力添えもあり、 3回目の1年生を迎えることになりました。さすがにこれ以上の在学が 認められないという事もあり、しぶしぶ登校する様になったのですが、 この時期に出会ったのが若き日の塩﨑先生だったのです。この授業がア ップテンポでなかなかおもしろい。取り立てて冗談を言う訳でもないが、 妙に魅了する。元来、数学好きだったのが幸いして、たまに質問に行っ たりしていたのが、やがて職員室に足繁く通う様になった。しかし、当 時はまさに1960年代後半に繰り広げられた学園闘争の時代で、多くの大 学を巻き込むばかりでなく, 高校にまでその余波は押し寄せておりまし た。私のクラスにも感化された一部の生徒がおり、彼らの言う旧弊な教 育体制に対する不満が様々の形で噴出し、授業が再三にわたりボイコッ トされるという異常事態に陥りました。全共闘運動から出た「自己変 革」という理念は、未熟な者の中にあって、学問・教育の在り方に対す る素朴な疑問として芽生え、模索していたのかも知れません。ただ、私 にとってはようやく学校で勉強するという本来の環境に馴染んだ頃で, ある意味では面食らった状況といえるでしょう。その後、勝山高校にお ける学園紛争は数ヶ月を経て終息に向かうのですが、虚脱感だけは残り ました。仲の良い友人と塩﨑先生のお宅にお邪魔して、泊まった事もあ りました。その様な時でも、塩﨑先生は人生訓のような話をする訳でも ありません。ただ、数学が好きで集った先生と生徒という関係でしたが、 数学の問題を解くという姿勢には印象深いものがありました。一つの問 題に対して別の観点から解けないかを, 腕組みしながら, 「ウーン」と 唸って熟考していたのを記憶しています。難解な問題に対しては特に闘 争心が目覚めるのか、様々の方法を駆使して鮮やかに幾通りかの方法で 正解に辿り着くといった芸当を披露してくれるのです。

塩崎先生の一年間の授業が終わった後は、晴れて2年生へと進級したものの、先の授業ボイコット事件なども尾を引き、高校での在学目標を見失い、退学への道を選択しました。その後は幸いにも大検に合格し、医学部へ進学することが出来、アメリカ留学も経験させていただき、平成12年に母校の教授を拝命しました。そのことをお二人の恩師に報告したところ、冒頭のような再会となった訳です。

今、大学の教官の一人として、とりわけ医師を育成する機関の教育者という立場に立って自身の人生を振り返った時、教育の重要性をいやが上にも思い知らされております。今日、医学部に入学してくる学生たちをみると、彼らは今まで本当に良い教育者に巡り会える機会があったのだろうかと首を傾げざるを得ません。私は幸いにして人生の若い時期に数学という領域を通してではありますが、その糧を塩﨑先生から得られたと思っております。塩﨑先生の言葉に発して表現しない数学への飽くなき執着から、最後まで決して諦めない姿勢を私は学び取りました。人生において何かに取り組む真剣さこそが、その人の価値をもたらし、しかも無意識に伝搬しうるなら、教育者としてこの上ない至福であろうかと思います。

(奈良県立医科大学 教授)

しょうちゃん

西野 博子

塩﨑先生、否やっぱり「しょうちゃん」と呼ばせて頂こう。全国で2番目に長い名前を持つ高等学校の同僚としての15年間、数え切れないほどの話題と飲み屋巡り、そして家族ぐるみのお付き合い。私にとって永遠の友人、恋人かも知れない。お付き合いを初めて間もなく附属の親睦会「あたた会」の1泊行事で寸又峡に行ったとき、大井川鉄道の車中で数学の問題を解いていたしょうちゃん、「変な趣味の先生」と少し奇異に感じた。後に彼は数学教師と言うより「数学の職人」だと思うように

なった。数学に対しては「頑固一徹」であり彼の人生そのものなのだ。 糊口の為の職業としての数学教師と言うにはあまりに俗世間っぽい,と 私は感じている。しょうちゃんとのエピソードは数え切れないほどある が、不思議なほど漫才の乗りなのだ。

その1. 家族旅行で伊勢志摩に行ったときのこと。まず、待ち合わせの 天王寺駅での彼の出で立ちは改札口を蟹歩きで通過するほどの大きいリュックを背負ってよろめきながら(少し表現オーバー)現れ、傍らの令 夫人は子供さんの手を引いてハンドバッグ片手に涼しい顔、まさに恐妻 家? 宿泊翌日の朝、しょうちゃんと私が二人で帰りの乗車券を買いに 鳥羽駅に行ったところ、学校に出入りしている旅行会社の添乗員とばっ たり出くわした。不倫旅行と早合点した添乗員のあわてぶりをご想像あれ。この話は、彼との飲み会で酒の肴としてよく登場する。

その2.私は今、糖尿と脂肪肝の疑いの診断を受け「アルコール、でん ぷんとうぶん控えよ」という指示を受けている。私の目は実に都合良く 出来ていてこの指示文を見たとき、「そうか、アルコール、でんぷん当 分控えるのか。」と読んだ。この肝臓にたまった脂肪の大半はしょうち ゃんとの出会いによって蓄積され、常習化した結果だと思っている。地 下鉄平野駅西にある「花いちもんめ」という飲み屋の柱の何本かは私と しょうちゃんが築いたものだろう。あるとき、いつものようにしっかり 飲んでご帰還することになった。しょうちゃんが誘ったのか、私が頼ん だのかはさだかでないが、酔っぱらい運転の彼の自転車の荷台に載せて 貰うことになった。近鉄針中野駅に向かう途中の「平等橋」という橋の 処で突然しょうちゃんが私を振り落としたのだ。(かれは未だに私が勝 手に落ちたと主張しているが)そのすぐ後ろに自動車が迫ってきていた。 「大丈夫?」不安げなしょうちゃんの赤い顔が私をのぞき込む。「大丈 夫と違うわ。もうちょっとで自動車にひき殺されるところやった。」と 私。「惜しい人を殺し損ねた」としょうちゃん。互いに憎まれ口を叩き ながら別れたが、針中野駅の明るい灯のもとで見ると、ストッキングは ぼろぼろ、すねからは血が流れ恥ずかしい思いで電車に乗った。それ以 来酔っぱらい運転は、自動車に限らず自転車も危ないと肝に銘じている。

最後に、やはりこれは是非とも知って欲しい。1988年8月、附属の管

理職室から出てくるしょうちゃんをみたとき、直感的に「彼は転勤する、それも灘高だ。」と思った。しかし、私は一切そのことには触れずに彼と相変わらず一緒に飲み歩き、騒ぎ、行動を共にした。聞くのが怖かったのだ。とうとう2月のある日、いつものように彼は自転車を押して、私は歩いて針中野の飲み屋に入った。今日こそは聞こうと決心したからである。「塩﨑さん、転勤するんと違う?」「うん」「そうやと思った。」と言いながら涙が流れた。今でも「なんでしょうちゃん風情の転勤で涙が流れてんやろ。」と滑稽だが、思い出すたびにあの時の寂しさは蘇ってくる。やはり附属にとっても惜しい人材を失ったという感は免れない。しょうちゃん、60年という人生は一つの区切りかも知れない。しかし、それは新しい出発点でもある。頑張って下さい。

(元 大阪教育大学教育学部附属高等学校平野校舎 副校長 現 大阪家庭裁判所 家事調停委員)

想い出一寸

下郡 実

はぁい、今日は1日1題やる日やな。256番か。ちゃんと解いて来たもんは分かってるやろけど、問題集の後ろの解答は大嘘、というより、見ても何書いとるんか全くわからんやろ。ようこんな訳のわからん内容を恥ずかしゅうものう解答例として載せとるわ。書いたん矢○ケンとちゃうか。

ほんで、解いたんは誰や……下郡か。ん~どれどれ……はいはい……まず漢字間違うとるな。これ、こんな字使うんか?ほんで~、おぅおぅ、なかなかの力作やなぁ……ここで解の公式使うんか……まてよ、こりゃちょっとおかしいぞ、ここで使うとんのは「怪」の公式や、この条件では判別式が必ずしも正になるとは限らんからな。ここではaとbの取りうる範囲で場合分けが必要なんや。ということで、ちょっと訂正すると

(同時に解の公式以下をさっと黒板拭きで消してしまって)

僕に言わせたら、こんなもん明らかの一言やねんけどな。ちゅうても、テストで「明らか」とか「一目瞭然」とか書いても点はやれんけどな。 初心者にも分かり易いよう説明するとやな……僕やったら、こんな七面倒くさいことせんと、スマートにこう解くけどな。与えられた式をグラフにしてみて、aとbとの正負の組み合わせをこう考えたら一目瞭然やる。まあ、僕の体型ほどスマートな解き方とはちゃうけどな。

君らがグラフ使うて解くときは、せめて2~3行の解説はつけといてくれな。勿論、さっきの下郡のみたいに力まかせというのも、答えが合うとったら別にかめへんで、怪の公式はアカンけどな。そやけど、はっきり言って、場合分けが多て、労力要ってしんどいわ。西野先生に聞いてみ、触媒使わんと化学反応起こすの、どんだけ大変か。

中略

……ということで、来週から微分に入るんやけど、実を言うと、もう 既に微分使うてるんやで。見てみ、この式の分母にちゃんと「B分の」 ってあるやろう。

(授業終了のチャイムが鳴る)

こら、だれが机の上片づけてええ言うた。ノート元に戻さんかい。ほんで、来週から微分に入る前にやな……

と、白衣を靡かせて得意のジェスチャー付きでの懐かしい塩崎先生の 授業風景を、ありのままの言葉で再現させていただきました。皆様、若 き日の塩﨑先生のスマートなお姿が瞼に浮かばれましたでしょうか?

当時、私は数学が苦手で、1日1題などは毎回の如く苦しんでおりました。しかし、わからないなりにも、塩﨑先生のグラフや図形を使った解答方法には目から鱗の思いを何度も経験致しました。数式をグラフや図形を用いて解くことは、数式の持つ真の意味を理解することとなり、数学が少しでも得意な方々にとっては、非常に有意義であったと思います。私は情けなくも1浪してやっとそれらの真意が分かった次第ですが……

この拙文をしたためるにあたり、物事の本質を考えることを数学を通

じて身につける方法を教えて下さった先生に、改めて驚嘆と尊敬を感じずにはおられません。塩﨑先生、どうかいつまでもお元気で。また願わくば数学に対しては生涯現役にてご活躍下さい。

(阪神電気鉄道株式会社 附属平野高校6期生)

何故私は塩﨑先生の"教え子(?)"に なり得たか??

岡本まり子 (旧姓:下郡)

塩﨑先生,還暦おめでとうございます。先生がもうそんなお年になられたとは。自分自身高校を卒業して何年になるのかを棚に上げて本当に信じられない気持ちです。

私は、塩﨑先生が大阪の附属高校平野校舎に在職しておられた際に、 非常にお世話になりました。先生のご指導のおかげで、苦手だった数学 が得意になり、ついには受験において数学を武器として希望の大学(文 系)に現役で合格できたといっても過言ではありません。

ですが、実は私は本来先生のご指導を受けることのできる"教え子"ではありませんでした。当時、私どもの高校は、各学年毎に担当の数学の先生が決まっており、入学した時の先生に卒業までお世話になる(=途中変更はない)システムで、塩﨑先生は私の1つ上の学年のご担当でしたので、卒業するまで先生の授業は一度も聞いたことがありませんでした。

であるにもかかわらず,私は数学のご指導は実質的に殆どすべて塩崎 先生にしていただいていたのでした。何故それができたのか?

これには私の兄(著者注:前ページの下郡実君です。)が深く関わっています。兄は私と同じ高校で、塩﨑先生担当の学年でしたので、3年間正規に塩﨑先生のご指導をいただいておりました。そして私が塩﨑先生ご担当の学年でなかったことを深く嘆き、橋渡しをしてくれたのです。具体的には、1年生の夏休みに、数学 I (古い!)の問題集の宿題が出

たのですが、塩﨑先生のご自宅に連れていき、夏休みの課題でわからな い問題を質問させていただく場を設定してくれたのです。

塩﨑先生は「とにかく解けて答えがあってればいい」ということで決して満足なさらず、より鮮やかでカッコイイ解法はないか常に念頭において問題を次々にさばいて料理していかれるので、最初は日頃の数学の授業とのあまりのギャップに戸惑うばかりでした。しかし、悩んでいた幾何の問題でも先生が補助線1本ひくだけであっという間に解決されたり、力技で延々と微分をしてやっと解けた問題について「田舎の凡人(私)はそうするけど賢くてハンサムな都会人、たとえば俺(先生御自身)やったらこうする」とかおっしゃりながらするすると幾何を応用して微分による解(怪?)法の何分の一かの時間で解いておしまいになられたりする感動を次々と目のあたりにして、私はすっかり先生の数学センスに病みつきになってしまいました(連打されるギャグには全然病みつきにはなりませんでしたが……)。

とはいえ、私の学年担当の数学の先生の手前、学校で塩﨑先生に質問するわけにもいかず、冬休み、春休み、とお休みの度にお邪魔しては宿題を教えていただき、そのあとご馳走になるということを繰り返しておりました(奥様、いつもありがとうございます)。

しかし、そのうち、勉強のペースや受験の関係上、休暇のタイミングだけでは追いつかなくなり、正規の担当の先生がお休みの日をねらって学校内で質問に伺うようになり、受験追い込み佳境に入りますと正規の先生がお席はずしの時を狙って質問に伺い、とうとう正規の先生にも目撃されてしまいました。さすがに冷や汗ものでした。

それでも、私はひんしゅく覚悟で塩﨑先生にご指導いただけて本当によかったと思います。教育実習に母校を訪ねた折、最初で最後の塩﨑先生の数学の授業を受けましたが、チョークの色に美しく染まった錦色の白衣をきて sin カーブと一緒に踊っておられる先生をみて、授業でもお世話になれていたら、と残念でなりませんでした。

今, 先生が担当しておられる学年の生徒さんにこの文を読んでいただき, 何の苦労もせず先生に質問できるという幸せを再認識していただきたいと思います。

最後に先生、巨人ファンをやめて阪神ファンに転向して下さい。塩崎 先生の中で唯一気に入らない点なので。これからもどうぞよろしくお願 いいたします。

(日本テレコム 附属平野高校10期生)

口の悪さは塩ちゃん譲り?

真田 尚美

塩﨑勝彦先生が還暦を迎えられたとのこと、おめでとうございます。 私にとっては、チョークで汚れた白衣を着て、少し意地悪そうに笑う、 40代の塩﨑先生なのですが、早いものですね。

私は、1984年4月、大阪教育大学教育学部附属高等学校平野校舎に入学したいわゆる「外部生」でした。1年生のときは、先生の授業を直接受けたことはなく、当初怖そうなイメージだけがありました。当時非常に生意気な生徒であった私が先生と「うんと仲良くなった」と感じたのは、85年3月のスキー合宿の時からだと思います。

合宿の折、初心者コースのうち、塩﨑先生の組だと知った時は、「よりによって、塩﨑先生なんて。怖そう」とただでさえ運動オンチの私は憂鬱な気分になりました。ところが、いざ講習が始まると、意外にも塩﨑先生は丁寧に且つ根気よくモタモタする私を指導して下さり、スキーを楽しませて下さいました。ただ、運動オンチの何たるかは十分には理解しておられず、滑る最中に「左足に体重をかけろ」と言われてもできずに焦る私に、先生は「お茶碗持つ方の脚や」と余計難しいことを仰るので、思わず右足に力を入れてしまい、グイッと左に曲がって、新雪に突っ込み身動きが取れなくなってしまいました。ストックで私を引っ張り出しながら、「お前は右手でお茶碗持つんか」と意地悪くからかわれたことは、今でも思い出されます。

このスキー合宿を契機に、私にとって先生は、急に相談しやすい「塩 ちゃん」となり、毎朝、30分早く登校して教官室へ行っては、先生から 「アホ」といわれながら、机の横にしゃがみこんで質問するのが私の「日課」となりました。先生の口の悪さは超一流で、質問に来た私に、目を細くして逆に「どないしたらええと思う」と軽くあしらわれ、私がむきになりあれこれ答えても先生から次々疑問をぶつけられるという、手の上で転がすようなご指導法でした。ただ、塩崎先生についていけば数学は大丈夫という安心感があり、結局数学好きでいられました。

高3の春も、期待も虚しく先生は理系2講座(同時開講)のうち、私が入っていない方のご担当で、私達の講座のメンバーは非常に落胆したものです。「日課」は続きましたが、夏休みから二学期にかけて先生が筑波に研修に行かれた間は、やむなく「ラブレター」(質問のお手紙)を書いて送っていました。

そんなある日「この調子だと到底受験に間に合わない」と私の講座のメンバーで燻っていた不満が爆発? し、一部生徒が校舎主任に理系数学の担当の先生を替えるよう直談判するという騒ぎがありました。私は、列の後ろで見ていた程度でしたのに、事の一部始終を塩ちゃんにご注進したせいか、塩ちゃんからはまるで首謀者のような扱いを受けることとなりました。先生の思い込みだけなら良かったのですが、事もあろうに先生は、私の結婚披露パーティーで「彼女は教師の首を挿げ替えた」と披露され、会場は大笑いでしたが、私は耳まで赤くなりました。花嫁く

らいは持ち上げて下さると 思った私が甘かったようで す。

塩﨑先生に鍛えて頂いた お陰で無事志望校合格と行 きたいところですが、浪人 し、なぜか法学部に転身、 今は弁護士をしています。

弁護士には論証がつきも のであり、数学的センスが 要求されます。と同時に、 理屈ばかりではすまない感

志賀高原横手山山頂 (2,305m) にて

情の世界でもあります。時には、依頼者に対しても厳しいことを言わなければなりません。でも、その真剣勝負の中で信頼関係が生まれてくるのだと思います。依頼者から解決後感謝の言葉を頂くことがありますが、「相手の弁護士よりずっと怖かったわ」と言われると、申し訳ないと反省しつつも、かえって嬉しく思えます。先生も不出来な私に対してこのように感じられたことがあったのかもしれません。

しかし、「塩ちゃん流」弁護士をするためには、塩ちゃんのように相手を信頼させるだけの力量がこちらになければなりません。先生への感謝とご恩返しのためにも、先生譲りの口の悪さだけでなく、「この人なら大丈夫」と信頼される弁護士になるよう努力を続けたいと思います。

(弁護士 附高13期生)

悪い癖

藤田 降雄

「あの△大学の解答は要領悪いで」「エッ! と言うことは、覚ィーたなアー。『敦子は質問もせんし、ノートも見せへんし、僕も見せてみとは言わんし』と言うてたのに!」「いや違う違う、昨日たまたま机の上にひろげてあったので何かいなと思って覗いてみただけや」「そのたまたまというのは毎日なのではないでしょうなアー。」「昨日が初めてや、信じて」「信じていいのかな?」という日もありました。長女の敦ちゃんの数学を3年間担当、3年生の時は担任。3年間恐い恐い保護者におののいておりました。

成績もとても良く、三者面談でこれといって(進学上の)話もないので、学校に来てもらうこともないか、そうだ、家へ行こう、と塩﨑家へ。 泡の出るジュースを塩﨑先生と飲んで歓談していると奥さんも入って来られてワァワァ。そこへ敦ちゃんが入ってきて何か話をしようとするので、「あんた入ってきたら、四者面談になるからアカンわ。出ていって」と思わず言ってしまった。無論大学受験は全戦全勝。 質問しに来たら、一言「(私になんか聞かんと)家でお父さんに聞き」と冷たく言ってやろうと思い続けて2年半、ついにその日は来た。昼休みに教官室にいると敦ちゃんが、"スタンダードI・解・代(受験編)"を手に私の方に来るではないか。待ちに待ったあの一言が言えると喜んでいたら、「これ、お父さんから」と"スタンダード"に挟んであったプリントを私に。アーァ、ついに3年間、一度もあの一言は言えなかった。

さて、そのお父さんの話ですが。悪い癖がある。サド的に人をいじめる。それも酒の席で。皆が酔ってもう少しでいい気分になろうとする時分に、近くにいる人に数学の問題を出す。「これ解けるか」、「おもしろい問題やで」と。すぐ解ける問題ならいいのだが、そんな問題は出さない。ウ~ン、困ったな、うまいこといかんなァ、と考えながら、ビールの入ったコップを手にすると、「飲んだらアカンがな、飲むのは解いてからや」と、飲ませない。周りはドンドン盛り上がってきているのに、解けない飲めない哀れな被害者は、酔いも醒めひたすら数学のお勉強。その様子を見ながら悦に入って自分は飲む。その癖を熟知している私は、君子危うきに近寄らず、今回は塩﨑先生の獲物を離れたところから可哀想にと同情。嬉しそうな顔の塩﨑先生を眺めながら飲むようにしている。解けたときの喜びようはまるで生徒。「そうか、こうすればいいんですよね」「そうや、やっと気がついたか」の声。問題が解けたからなのか、ビールが飲めるからなのか、とにかくホッとした顔でうまそうにビールを飲む。ピッチをあげて。無論塩﨑先生も。

誰か逆の立場に塩﨑先生を立たせてギャフンといわせてください。お 願いします。

でも酔うほどに冴える人だから無理かな。

(大阪教育大学附属高校平野校舎)

塩﨑先生と大学入試検討委員会

三輪 雅

[出会い] 私が塩﨑先生に最初に会ったのは、もう15年位前のことになるのだが、そのときのことを今思い出そうとしても全く記憶に残っていないのである。私が大学入試検討委員会に初めて参加したときのことであろう。大阪高等学校数学教育会の40周年記念誌を見ると、先生は3年程、委員長として委員会のお世話をして戴いている。誰よりも大学入試問題に詳しい先生にはびったりの役目かも知れない。大学入試検討委員会は、共通1次試験が初めて実施される前年(1979年)に久永先生(当時、附属平野高)が中心となって発足している。その後、世話役を塩﨑先生、鶴崎先生(大予備)の後、私が引き継いで?もう10年近くが経ってしまった。

[入試問題の鬼] いつか、塩崎先生に聞いたことがある。「先生が大学入試問題をほとんど(失礼、すべてか)お解きになるのはどうしてですか」と。今になって見れば馬鹿な質問をしたものだ。そのとき、先生は解くことが面白いから、好きだからというようなことをおっしゃった。「好きこそ物の上手なれ」である。いや、それ以上に努力もすごいのであろうと私は思った。この委員会で先生はいつも数学の問題を出される。正確に言うと、委員会後の飲み会の席でアルコールもまわり、少し落ちついた頃を見計らって。ほろ酔い気分も醒めて、一同真剣な顔つきになる。いつも先生の問題を考えてはいるのだが、納得した答えを見つけられないままその問題を忘れてしまうことが、私の場合は多い。先生にはいつも済まないと思っている。問題が泉のように湧き出て来るのは、日頃の勉強の量がすごいということではないか。関西の主な16大学の入試問題の難易度表を委員会で作っているが、先生に作ってもらうとすべて、A(易)となってしまうのも当然か。先生にとって入試問題はすべて易しく見えるのであろう。

[鮮やかな解法] 委員会では、鮮やかな解法についての話題も先生が提

供してくれる。問題の本質を掴むには、別解を考えるのが良い方法なのであるが、先生はそれをいつも実践しておられる。そういう姿勢を見ながら私は常に感化されているのだが。有名なのは、例えば、3次関数の極大値と極小値の差を求めるのも先生だと暗算になる。(実は安産だと男にはできない)

(例)

3 次関数 $f(x)=ax^3+bx^2+cx+d$ が x=a, β で極大値, 極小値をもつときの極大値と極小値の差は

 $|f(\alpha)-f(\beta)|=\left|\int_{a}^{\beta}f'(x)\,dx\right|=\left|3a\int_{a}^{\beta}(x-\alpha)(x-\beta)\,dx\right|=\frac{|a(\alpha-\beta)^{3}|}{2}$ [幾何] 図形の問題では,常に幾何を使うことを考えておられた。委員会では,亡くなられた城山先生と双壁で,常に幾何の大切さ,面白さをお教え戴いた。私自身も幾何は好きな方なので,複雑な計算でごりごり解くよりは,幾何で解けるならその方が性に合っているのかも知れない。 [ジョーク] 委員会で何か説明される中にも,いつもジョークが入っている。先生の頭の回転の速さから出てくる速射砲のようなものである。 駄洒落?も多いのだが,その言葉を聴いていつも一種の爽快感を覚えている。それが無いと寂しい。

[日数教,近数教] 日数教,近数教では私が参加した年には,必ずお会いする。(ということは,毎年参加されているということか)私も何回か発表させてもらった大学入試の分科会でいつもお姿を見かける。ほとんど毎年参加されているとのこと。数学を本当に好きな先生の姿がここにある。他の先生は参加費を払って,看板の前で写真を撮って旅行に出かけるというのに。いつの大会か,前代未聞であるが,逆指名事件?が起きた。発表の西尾先生(清風高)が,参加者の塩﨑先生に質問されたのだ。突然の出来事にも,先生は落ちついて答えられた。さすがである。

最後に、先生、これから、様々な問題、ジョークを我々に提供して下さい。

(大阪府立北野高等学校)

『逆指名事件』と塩﨑の解法

西尾 義典

1. 逆指名事件

塩﨑先生との親交は約20年ぐらいになります。最初,大学入試検討委員会が教育大附属平野校舎で毎回,行われていた時に,私も参加させて頂きました。そのとき,問題を解くスピードや別解のうまさが際立っていたように思います。特に私に影響を与えたのは,二月から春休みにかけて毎年,300~400題,その年の入試問題を解くという彼のエネルギーです。自分もこれに刺激を受けて色々と勉強させて頂きました。

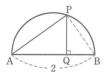
私は日数教の全国大会で5年間程発表させてもらっています。福岡大会のとき「相加・相乗に関する発表」をさせてもらいました。塩﨑先生と一緒にこの大会に参加したのですが、発表前夜の飲み会で彼から「相加・相乗を用いずに、図形的に解く別解」を知らせてもらったので、発表のとき塩﨑先生を指名し、彼も壇上に上がってもらい、私と彼のどちらが発表者か分からないという結果になった事を思い出します。いわゆる、我々の間で有名になった『逆指名事件』です。普通、発表が終わって参加者の各先生から質問を受けるのですが、私のこのときの発表ではこの事が逆になったのです。

2. 塩崎の解法

相加・相乗平均の性質を用いる場合,変数が正で,和または積が一定のとき使えるのであるが次の問題のようにうまく使えるかどうかが、ポイントである。問題を見ていこう。

- 例題

図において、AB=2 とし、AB を直径とする半円周上にP があり、P から AB に下ろした垂線の足をQ とする。 $\triangle APQ$ を AB のまわりに回転してできる立体の体積V の最大値を求めよ。



('73 東京大(改顯))

ポイント AQ=x (0<x<2) として、体積Vをxで表すことを考える。

解答 AQ=x (0<x<2) とおくと $PQ^2=AQ \cdot BQ=x(2-x)$ よって、体籍Vは

$$V = \frac{1}{3} \pi PQ^2 \cdot AQ$$

$$=\frac{\pi}{3}x^2(2-x)=\frac{\pi}{3}\cdot\frac{1}{2}x^2(4-2x)$$
 ← 和を一定にするための変形

相加・相乗平均の関係より

$$\frac{x+x+(4-2x)}{} \ge 3\sqrt[3]{x^2(4-2x)}$$

この部分を発見できるかどうかです。

$$4 \ge 3\sqrt[3]{x^2(4-2x)}$$

$$x^2(4-2x) \le \left(\frac{4}{3}\right)^3$$

よって
$$V = \frac{\pi}{3} \cdot \frac{1}{2} x^2 (4 - 2x) \le \frac{\pi}{3} \cdot \frac{1}{2} \cdot \left(\frac{4}{3}\right)^3 = \frac{32}{81} \pi$$

ただし,等号が成立するのは,x=4-2x すなわち, $x=\frac{4}{3}$ のときである。 これは,0< x<2 を満たす。

よって,
$$x=\frac{4}{3}$$
 のとき, V は最大値 $\frac{32}{81}\pi$ をとる。

本来なら微分法を用いて解くのだが、相加・相乗平均の関係を使えば、計算が 非常に楽になる。

3. あとがき

塩﨑先生は、図形で解く解法が得意なのですが、それはこの冊子の中に多く含まれると思われるので、その解法を楽しみにしているところです。よく電話で問題のやりとりをするのですが、私の疑問点にすばやく応えてもらっています。

(大阪清風学園)

師匠 塩﨑勝彦先生との出会い

川西 秀史

塩﨑先生が、前任校の大阪教育大学附属高等学校平野校舎に勤務されているときのことでした。教育実習生として伺ったとき、先生が私の指導教官でありました。当時(昭和62年)の感想としては、塩﨑先生が直接教えていない学年の生徒が、数研の「入試問題集」をもって質問に来て、一瞬(わずか数秒)で問題を解いて教えている姿にビックリしました。また、基礎解析の微分の範囲であったと思いますが、教科書の例題の解答以外で最大値を求めるのに、どのような方法があるかと質問されて全然わかりませんでした。予想もしない(相加平均)≥(相乗平均)を使うのでした。感激したことを、今でも覚えています。

私は、大学卒業後に、大阪工業大学高等学校に就職しました。昭和63年度に日本数学教育研究大会が静岡で開催されたとき、そこで、偶然にも塩﨑先生と再会できました。塩﨑先生の出身校の天王寺高校の先輩M氏で、大阪工大高におられた先生が仲に入って、塩﨑先生と私の関係が密接になって(師弟関係ですよ!)、現在に至っています。後で、塩﨑先生は、M氏から"余計なことを私に言って"と恨まれたそうです。

今まで塩﨑先生にお付き合いして頂いて、塩﨑先生のピンチが2回あったと思われます。1回目は大病され手術されたことです。塩﨑先生が、病気で入院されていると聞き、大阪大学医学部附属病院(当時、中之島にあった)にお見舞いに行った時に、ベッドの上に小さな机を置いて大学入試問題の解答作成をされている姿を見て、ビックリ仰天しました。 "病室でボケッとしていても暇やから、勉強しているんや"と言われました。恐らく、数学の力で病気を治したと思われます。2回目は、阪神淡路大震災の被害に遭われたことです。「震災のときは、本棚が倒れて下敷きになって死ぬかと思った。辛うじて、大型テレビに本棚が当たり、本棚の前扉の粉々になったガラスを頭から取り除いて起き上がり、災難

から免れることができた。」と言われていた(この恐怖は体験した人に

しかわかりませんが…)。

次に、塩﨑先生の人間像を書かせて頂きます。数学の知識が豊富で非常によく勉強されていて瞬時に大学入試問題を解く。口癖が、「数研の入試問題集の解答・ヒントが下手。」私には、どこが下手なのかわからない。後で、教えて頂くと、こんな解法絶対気付かないというのがほとんどである。また、ギャグが大好きで、「この問題、安産(暗算のまちがい)で解決するで!男には無理やけどなあ。」と言われる。(私は、真剣に考えているのに)それと、ビールも大好きで、ビールを飲んでいる時に、必ず問題が出てきて、ちょうどよい気分になっているのに、これがまた難しくて全然解決できない。「悔やし~い」の一言であります。

最後になりましたが、数学の解法で、塩﨑先生から教えて頂いた中で、 一番印象に残っていることが漸化式であります。塩﨑先生は巨人ファン で、長嶋監督が「勝利の方程式」という言葉を使いますが、私は「勝利 の漸化式」という言葉を授業で使います。例えば

サイレンを断続的に鳴らして16秒の信号を作る。ただし、サイレン は1秒または2秒鳴り続けて1秒休み、これを繰り返す。また、信 号はサイレンの音で終わるものとする。

(1) 略 (2) 信号は何通りできるか。

('01 名古屋大)

という問題があります。これは、漸化式を作ればすぐに解決できます。n 秒の信号の作り方が a_n 通りあるとすると、

 $a_n = a_{n-2} + a_{n-3}$, $a_1 = 1$, $a_2 = 1$, $a_3 = 1$ $b > a_{16} = 49$

還暦おめでとうございます。今後ともご指導よろしく御願いします。 (清風中学・高校)

塩﨑先生とは一緒に仕事をしたくない?ハナシ

室井 幸典

問題集のこと

私がまだ府立K高校に勤務して間もないころのある日,阪急神戸線の 電車の中で塩﨑先生に(以下魯先生)にバッタリ。

「やあ、お元気ですか?」「アカン、いろいろシンドイで。」見ると働 先生はS出版の受験用問題集「M」を見ておられる。

「あれ、灘でもこんなのを使うんですか?うちでも来年はこれに決め たようですよ。」

「そうや、あんまり難しいものやらせてもあかんからな~。」

しかし、どう考えても腑に落ちないので、よくよく話してみると彼の 話は高校一年生、私が言っているのは来年の三年生のことであった。

旅の途中で

いつのことであったか?日数教福岡大会の途中,オプション旅行で博 多から筑後川温泉に向かう高速バスの中,私の前の座席で燭先生はうつ むいてじっとしたまま。

「塩﨑先生,気分でも……」と声をかけようと立ち上がると,なんと彼はS出版入試問題集を解いている!

「うわ、先生こんなところでも問題解いてるんですか?!」

「頼む、堪忍して。もうちょっとで今年の分全部終わんねん。これは 僕の楽しみやからナ、もうちょっとやらせてや」

この分では、鵜飼見物の舟の上でも問題を解いているかもしれない。 鮎を食べている横から質問でもされたらタイヘンだ。私はそのように心 配した……それも可能性の十分に高いリアルな心配であった。

入試問題解答作製作業

これも私のK高校勤務のころ。X新聞社の依頼で東大の解答速報作製

を引き受けた。夕方、新聞社の一室に集まったのは O, U, Y 等々の強力メンバー。それに燭先生。私などいてもいなくても関係ない。

さて、問題を解き始めると信じられないことが起こった。私が一問を解く間に、臨先生はほぼ全間について方針が出来上がってしまう。その日に集まった全員の平均をとっても、他のメンバーの一人が一問解く間に臨先生は三間は解いている。そんな感じであった。

〇氏が言った。「これは塩﨑先生一人に解いてもらって、僕らは計算のチェックをする。そのほうが早いし、信頼度も高いのではないか?」 私もまったく同意見であった。

阪神大震災から今日まで

地震のとき私は東灘区のF小学校に足繁く通い,週末は泊まり込んだりしていた。灘高校も体育館が避難所になっていた。灘高校には自衛隊の化学戦部隊が風呂を設営していたので時々その風呂に行った。塩﨑先生も偶然にも地震の日は東灘区内に泊まりであったために,まさしく九死に一生を得た状態であった。

F小学校に私を訪ねて下さったこともあった。折悪しく震災対策本部に不在であった私はボランティアの日体大の学生に「小柄な飄々とした方でしたよ。」と言われ、すぐに誰であるか判った。

これより後、体調がすぐれなかったり、さまざまにご苦労もおありであった様子ながら、今日では、すっかり快調さを取り戻された由。大変に(研究会のためにも、予備校のためにも?)すばらしいことと喜んでいる。しかし、机を並べて仕事をするのは勘弁してほしいな、と思う私は悪人であろうか?

とまれ、臨先生 これからもお元気で。

(大阪予備校・北予備校 講師)

職人技の数学

荻田 竜三

制限されたゲームとして、大学入試問題は面白い。結構洗練された知的なゲームであり、中には美的鑑賞に耐える問題もある。発想として切れ味を感じさせるものもあり、論理的な面白味もある。教科書と違った数学的な見方が必要とされる場合もあり、数学を広く理解する上で役に立つ問題もある。

先生のような熟達の人は、過去問解法の蓄積から、自由な解法を引き出される。福岡での日数数大会で、相加相乗平均を使った最大値最小値問題の解法例を湧き出すように展開されたのには、驚いた。一つの技術を縦横無尽に適用できる蘊蓄とその自由さは、いわば技の到達点である。

技術を使いこなすだけの機転が働く生徒にとって、大学入試問題を解くのは、精神的な充実感が得られる楽しい時間である。数学公式を自然で当たり前のように理解しているならば、自信ある思考を展開することで、意味ある結論を導く体験が得られ、それは自己の思考を肯定する機会になる。

10年ほど前までは、その自由さを持ち始めた生徒たちは、例えば公式間の相互関係や概念の拡張を示すと、それに関心を持った。しかし、次第に公式を記憶し、それを適用し、問題を解くことだけを目的とする生徒が増えてきていると感じる。所詮入試をクリヤーすれば、それで良しとするわけである。

その結果かどうか、はっきりしないが、次のような話を複数の先生から聞いた。

ある先生が住宅ローンの繰り上げ返済をするか、預金するかなど、プランナーと称する大手都銀の銀行員に相談したところ、いろいろ数字を出して話をする。「この数字はどうやって出て来るの?」と聞くと、コンピュータに入れると計算してくれると答えた。「どんな式か教えてくれないか?」と頼むと、「難しい式なので次の日までに調べておきます」

とのこと。次の日に仰々しく出された式を見ると、単なる等比数列の和 の公式で、「これに代入するのです」と得意げに話したそうだ。

学校で勉強した数学は実生活では役に立たない、と言われる。確かに 学校には学校独自の文化があり、進学校の数学では、数研の問題集に代 表される蓄積された問題の文化がある。現在の勤務校で受験問題から離 れ、生徒の数学能力を見ると、小学校レベルの算数をよく分かって欲し いと思う。ともあれ、常識を持って、自分の頭で考えるという習慣を大 学進学の時には、獲得して欲しいものだ。

和算を振り返ると,宣教師によって伝えられた数学を,日本人が発展させていった。日本人の知的な好奇心の強さに宣教師も驚いたらしい。 キリスト教が禁制になってからは,日本独自の発展を遂げた。

その方向は、問題を精緻に複雑にし、解法を競うことにあった。高度な問題を解くため、新しい手法を開発した。日本的な、または東アジア的な特質か、一般的・抽象的思考より、問題の困難さや面白さを競うことを好む。

大学入試問題に対する我々の姿勢には、和算の伝統に通じるものがある。 適当に複雑で多様な問題は、箱庭的な面白さを感じることができる。 これもまた確かに数学である。

しかし、問題は解答後にある。問題から外に広がって欲しい。それを拡張し本質を見極めたり、現実との関わりを発見することである。数学が現実世界の中で生まれ、その技術が実生活に利用できることを、特に文科系の人にも実感し、使って欲しいものである。それが世間で数学の価値を高める唯一の方法である。

ともあれ、問題を解くことは、緊張を強いる。実験し、筋道を見つけ、計算し、点検するという充実した時間である。問題の前では、生徒も教師も平等である。それが教師をまともにさせる。時には、熟達の技を見せてもらえるのは楽しい。数学教育関係者の一部に感じる、生徒へ(数学へ)の傲慢さとは、無関係である。

(大阪府立成城工業高等学校)

別解と塩﨑先生

Dedicated to K. Shiozaki teacher on his 60th birthday

村井 貫悦

大学入試検討委員会にものすごい先生がいる。超難問の入試問題を楽々と解き、しかも別解まで用意されている。塩﨑先生に対する私の印象である。

本当に数学の力のある先生とは、ひとつの問題に対して多様な解答を見つけられる人のことをいうのだろう。S. Krulik や J. A. Rudnick も 著書の中で「4つの問題をそれぞれ1つの方法で解決するよりも、1つの問題を4つの方法で解決することの方が問題解決過程としてより価値が大きい。」と述べている(A Handbook for Teachers)。

1. 数学する

最近,数学の問題をWebページ化してその問題に対して多くの人が多様な解法(別解)を考え、その解法について議論をする授業がよく行われている。大阪教育大学附属高等学校の吉武進氏は、このような授業を通じて、生徒が変容すること、授業が変わることを示した(「第33回数学教育論文発表会論文集」日本数学教育学会)。

最近の生徒は、与えられたことはきちんとするがそれ以上のことはや らない。数学の問題を解く場合も1つ解答がみつかればそれでよしとし、 別解までは考えようとしない。

「数学する」という言葉が数学教育界で使われるようになってから久 しいが、これは、測度論で有名な Halmos 教授がある講演の中で 「The best way to learn mathematics is to do, and the worst way to teach mathematics is to talk.」と述べたことによる。

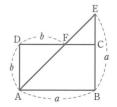
「数学する」ような生徒を育成するにはどうしたらよいか。色々な方法が模索されているが、吉武進氏の実践もそのひとつであろう。

2. 別解も答案に書くテスト

私は、ひとりの生徒が1つの問題に対して考えついた多様な解法(別

解)をすべて答案に書くテストをおこなったことがある。このようなテストも生徒が「数学する」ようになるのに有効である。例えば、

不等式
$$\frac{a^2+b^2}{2} \ge ab$$
 を証明せよ。



これは、「差をとって平方完成」で終わりであるが、a>0、b>0 のときは、左のように図をかいても証明できる。

AB=BE=
$$a$$
, AD=DF= b とすると
左図より \triangle ABE+ \triangle ADF \ge 長方形 ABCD

また、y=f(x) を連続な単調増加関数とし、

 $f(x) \ge 0$, f(0) = 0 とする。x = g(y) を y = f(x) の逆関数とすれば

$$\int_0^a f(x) \, dx + \int_0^b g(y) \, dy \ge ab$$

という定理を知っている生徒は

$$\int_0^a x \, dx + \int_0^b y \, dy \ge ab$$

からも証明することができる(「数学学習の理論と問題解決」梅沢敏 夫)。

1つの問題に対して1つの解法を答えればよい一般的なテストではこのような解答をする生徒はまずいないであろう。しかし、考えついたすべての解法を書くテストを行えば、生徒は図形を使ってみたり、学校で習っていない定理を自ら進んで学習したり、つまり、「数学する」ようになるのではないだろうかと私は考える。また、私は、考えついたすべての解法を答案に書くテストを使って今までより適切に生徒の学習診断を行うことができることも示した(「第29回数学教育論文発表会論文集」日本数学教育学会)。

3. おわりに

私が「別解も答案に書くテスト」を考えたのは、塩﨑先生の影響によるところが大きい。塩﨑先生に倣って、私も別解をいろいろと考えているうちに、教師だけが別解を考えるのではなく、生徒にも別解を考えさ

せてはどうだろうか、と考えるようになったのがきっかけである。

塩﨑先生が大学入試検討委員会で述べられた解法や、塩﨑方式ともいえるような種々の指導法は私には大変参考になった。そして、そのまま授業で利用したことも多々あった。これからも私たちに多くのご教示を下さることを願ってやまない。

最後に、還暦を迎えられてますますお元気でご活躍されることを祈念 する。

(大阪府立美原高等学校)

塩﨑先生に感謝を込めて

鶴崎 篤

市岡高校でのノドカな教師生活の中で、大阪大学の入試の解答速報を、 新聞に掲載し始めたことが、僕の教師生活の大きな転機となったような 気がする。

それまでのテストをする側から、テストをされる側にまわったようなもので、入試の解答速報を2年もすると「もう一度(初めて?)勉強しなくっちゃ!」と思い始めた。そして、美見先生の紹介で1985年(昭和60年)入試部会に、参加させてもらうこととなった。特に、一年目の研究会は、印象深く覚えている。

5月の最初の会議で、塩﨑先生、美見先生、久永先生達の気さくな人 柄及び会議に、すっかり溶け込み、皆の意見をメモするだけでなく、問 題について、いくつかしゃべらせてもらった。

そして、会議の最後に、6月の総会での代表質問を誰がするかになり、 僕自身の会議は終わったつもりで余韻にひたっていると、なかなか決ま らず、「君どうだ!」と初参加の僕に振られて来て、丁重に断ったのを 覚えている。

しかし, 秋の私立大学の入試連絡協議会へ向けての入試部会では, と うとう断り切れず代表質問の大役を, 暗い気持ちで引き受けることとな った。

この会議の後,「一杯行こか!」と酒を誘ってくれたのが,入試部会の委員長の塩﨑先生である。

ループタイ姿の塩﨑先生と初めて話をしたのがこの時であり、ここから、先生との付き合いが始まった。そして、2人で飲んでいる時もほとんどが数学の話で、僕らの新聞の解答速報にも及び、「君らの3番の解答へタやで!」と言うほど数学に関する事には、どんな事にも目を通している先生であった。

市岡高校では、新任の頃、親しくしていただいた北垣先生から「何年も数学の教師をやるのなら人の作った教科書でなく、自分で作った教科書で授業するようにならんとな」と何回か言われていたのだが、この塩﨑先生、そして、その上の世代の城山先生、美見先生、久永先生達が蓄積したものを学ぶことにより、高校数学を、生徒にわかりやすく再構成できるのだ、僕自身の教え方を作るのだ、と思うようになっていった。まさに塩﨑先生との出会い(1985年)が、教師生活の第2幕の始まりとなった。次の年からは「入試部会の仕事を手伝ってくれ」と頼まれ、副委員長というポストをいただき『﨑々コンビ(?)』で、入試部会と、後の2次会(飲み会)も定例化し、これに合わせて、会議の場所も飲み代の安い市岡高校、港高校(藤田氏)へと移っていった。この飲み会の最中でも、30分もすると、紙がない時は、割り箸の入った紙を広げて問題を書いて皆を悩ませ、気分良く酔わせてくれないのが先生である。

そして、我が家で食事を終え、ほろ酔い気分でノンビリしていると、 突然電話で「こんなおもしろい問題がある」と問題を説明し「30分後に 電話待ってるで」と家庭生活を脅かすのも先生である。

また、数研の入試問題集の解答作りに関しても、「やりませんか?」と勧めると「人より速く、入試問題を見ることができて、こんなに楽しい仕事はない」と、次の年から僕らの3~5倍の量をこなしていくのが先生である。

1987年(昭和62年)には、東大の解答速報作製の依頼を新聞社から受けたが、さすが市岡では荷が重いと研究会のメンバーでやることとなった。その中にはさすが難問も多く、皆苦しんだが、先生だけは、ほとん

どの解答を作り上げていた。

一方, もう一つの楽しみもできた。この入試部会の中に, テニスをやるメンバーが見つかり, 塩﨑夫婦, 二葉夫婦, 西尾さん, 他, コーチ役の三輪さんと, 八尾や長居公園のテニスコートに集まり, 楽しく汗を流し, そして, 宴会。ネクタイ姿とは違う, 家族ぐるみの付き会いも始まった。

塩﨑夫婦を始め、笑い顔が印象的な多くの友人をもつことができた。 これからもよろしく!

お世話になります!

(大阪予備校・北予備校 専任講師)

焦点の一つに引力中心がある楕円運動 と距離の二乗に反比例する力

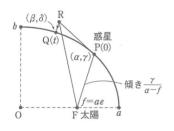
岡 多賀彦

塩﨑先生と親しくなれたのは昭和63年夏の日本数学教育学会静岡大会で「頼んでもないのに代わりに演壇に立ってくれた」ときからである。昭和60年の奈良大会で「大学入試問題を裏から見ると」を初めて発表した(このとき塩﨑先生も初めて発表された)。第2回目として「行列の n乗の意味」を発表する予定で「福武書店」高校部の援助により49ページのパンフレットも完成しすでに静岡に送っていた。前日(8月8日)の午後、パンフレットを受け取りに、預かっていただいていた静岡駅前の公文式静岡事務局に米沢局長を訪ねたところ「お父さんが亡くなった」との報せを受けた。「備中高松城水攻め」のときの秀吉の心境であった。パンフレットを会場に運んで、係の人に発表ができなくなった旨を伝え、宿舎に大阪高等学校数学教育会の仲間を訪ねて大阪に引き返す旨を伝え、「よりによって」と思いながらUターンした。親父の葬儀で諦めたが、後で聞くと塩﨑先生が緊急リリーフしてくれていて、第2回目の発表?となった。それが塩﨑先生を「親友」に変えた。

その後、物理に移ったのでしばらく数学での発表から遠ざかっていた (因みに、全国理科教育大会では、第1回目の発表が昭和56年の岐阜大 会で、第10回目が平成12年の愛知大会)。「枯れ木も山の賑わい」で復活 し、3回目が平成11年の秋田大会「非同次形漸化式の特殊解の作り方」、 4回目が去年の千葉大会「自然流の積分方法」。

きれいな数字で終わろうと5回目が今年の埼玉大会であった。関係者の好意で白ページを免れ、締切がとっくに過ぎ去っていた7月11日に(外部からの侵入者を防ぐ為に校門が閉ざされていた)埼玉大付属中学まで原稿を持参した。その日の午後、原子力委員会事務局に小生の書「原子力演習」(ERC出版)を監修していただいた委員長の藤家洋一先生を訪ね、完成した本を届ける用事があった。以下は平成13年夏「日本数学教育学会・埼玉大会」の発表原稿である。

世界の名著26「ニュートン」,河辺六男編(中央公論社)111ページ,ニュートン「プリンシピア」,中野猿人訳(講談社)81ページでの図形による計算の代わりに,代数計算によって「楕円の片方の焦点に太陽があるときの惑星の運動では,惑星に働く加速度の大きさは太陽と



(1)

惑星との間の距離の二乗に反比例する」を示す。

xy 平面内に原点Oを中心とする楕円

$$Ax^{2}+By^{2}=1$$

がある。 $(Aa^2=Bb^2=1)$

時刻 0[s] に、惑星が $\mathbb O$ の周上の点 $P(\alpha, \gamma)$ にある。焦点の一つ F(f, 0) に太陽があるが、その引力を受けなければ、惑星はPで引かれた楕円の接線

$$A\alpha x + B\gamma y = 1$$
 ②

上を等速(?)運動する。

時刻 t [s] には、②上の点Rに達しているはずであるが、太陽からの引力によって、同時刻に、惑星は①の周上の点 $Q(\beta, \delta)$ に来ている。

ガリレオに言わせれば「線分 RQ だけ太陽に向かって落下した」。加速度の大きさをgとすると、

$$RQ = \frac{1}{2}gt^2$$

線分 RQ の方程式は

$$y - \delta = \frac{\gamma(x - \beta)}{\alpha - f} \tag{4}$$

で、Rのx座標をxRとすると、②、④から

$$\beta - x_{R} = (f - \alpha) \times \frac{(1 - A\alpha\beta - B\gamma\delta)}{1 - A\alpha f}$$

となるので、 落下距離は

$$RQ = FP \times \frac{1 - A\alpha\beta - B\gamma\delta}{1 - A\alpha f}$$

点Pから楕円の一つの準線 $x=\frac{a}{e}$ に下ろした垂線の足をHとすると,

$$PF: PH=e:1$$

$$1 - A \alpha f = \frac{PF}{a}$$

これから

$$RQ = a(1 - A\alpha\beta - B\gamma\delta)$$
 (5)

つぎに、扇形 ? FPQ の面積を、重箱の角を無視して、三角形 FPQ の面積 (\triangle FPQ) として

$$\frac{1}{2} \times \{ (\alpha \delta - \beta \gamma) - f(\gamma - \delta) \}$$
 (6)

で近似する。

中心力による運動では「面積速度が一定」なので、公転周期 T[s] とすると、

$$\frac{\triangle \text{FPQ}}{t} = \frac{\pi a b}{T}$$
 \bigcirc

ところで、楕円の方程式を使うと、 $\gamma-\delta$ 、 $\alpha\delta-\beta\gamma$ が $\alpha-\beta$ を、 $1-A\alpha\beta-B\gamma\delta$ が $(\alpha-\beta)^2$ を因数に持つことが判って、

$$\lim_{\beta \to \alpha} \frac{RQ}{(\alpha - \beta)^2} = \frac{b^2}{2a\gamma^2}$$
 \tag{8}

$$\lim_{\beta \to \alpha} \frac{\triangle FPQ}{\alpha - \beta} = FP \times \frac{b^2}{2a\gamma}$$
 9

となる。

③, ⑦, ⑧, ⑨から, 万有引力による「落下」の加速度の大きさは

$$\lim_{\beta \to a} g = \lim_{\beta \to a} \frac{2RQ}{t^2} = \frac{4\pi^2 a^3}{T^2} \times \frac{1}{FP^2}$$
 (10)

と求められる。

万有引力定数G,太陽の質量Mとすると、ケプラーの第3法則は

$$\frac{T^2}{a^3} = \frac{4\pi^2}{GM} \tag{1}$$

と表される。

⑩、⑪から、質量mの惑星に関するニュートンの「運動第2法則」

$$m \times g = G \cdot \frac{Mm}{\text{FP}^2}$$

から「万有引力の法則」が確認される。

(兵庫県灘高等学校)

長光 實

最近、比較的有名な予備校で、そこではあまり数学を必要としないクラスで授業の応援に行きました。生徒はおとなしくやり易くて、まじめにノートを取ります。暫くすると教務から注意され、黒板に書いたものに、後から追加するのはやめて欲しいということです。いわば、生徒はその時間にはコピー機になって丸写ししており、後でそれを丸覚えしようというつもりだけのやり方なので、追加事項をどこに書くのかが分からないようなのです。一般にはそれに似た場面が多いようです。

当節は、何よりも生徒の意識の変化が大切であることは確実でしょう。 卒業生の会に出席したときなど、ただ口をあけて、入れてくれるのを待 つ姿勢では消化不良を起こすだけであるから、息子には、その先生を守 り立てることによって自分を大きく向上させようとする気持ちになるこ とが大事であることを強調します。実際、私など、そのような生徒に恵まれた為に同じ学校で47年も勤め上げさせていただいた様なもので、今になって感謝しているような次第です。

子供には、どんなやり方でも良い、次の時間にやると決まったことは必ず一通り目を通し、できれば、下手でよい自分の考えで自分なりの解答を作ることも勧めます。それが教師のやり方より下手であれば、自分の考え方をさらに広げるチャンスにもなりましょう。教師の解答より上であれば自信もつき、どのような場合になっていてそうなれたかの反省もされることでしょう。先生が作っていくように生徒も作っていくことだと見れたら言うことはないでしょう。

教師の側から見ると、教室では、数列の時間に最初は大抵の場合は

$$\sum_{p=1}^{n} k^{p} (p=1, 2, 3)$$

の結果を練習を積んで覚えてことを済ますというのが殆どのやり方でしょう。これでも一応,多くの大学入試には間に合うでしょう。

また、続いて、種々の問題として

 $\sum_{k=1}^{n} k(k+1)$ をやったら、逆に、 $\sum_{k=1}^{n} k^2$ の公式を導くのも、やらせてみれば理解が確実になるかも? さらに

$$\sum\limits_{k=1}^{n}k(k^{2}-1)$$
 から $\sum\limits_{k=1}^{n}k^{3}$ を導くこともやれば,

恒等式 $x^3 = ax^4 + bx^3 + cx^2 + dx + e$

$$-\{a(x-1)^4+b(x-1)^3+c(x-1)^2+d(x-1)+e\}$$
 b 5

$$x^{3} = \frac{x^{4} - (x-1)^{4}}{4} + \frac{x^{3} - (x-1)^{3}}{2} + \frac{x^{2} - (x-1)^{2}}{4}$$

を得て目的を達する生徒が出るかもしれない。

 $\sum_{k=1}^{n} k^4$, $\sum_{k=1}^{n} k^5$ の公式へと発展して行く生徒も出てくるでしょう。さらに、図形的に公式を誘導する子も出るかも? こうなればしめたものです。 それやこれやでくどくど書きました。このようなことはすでに実行済 みの方も少なくないことでしょうが、次の記事のため敢えて記しました。

最近は、前述のような書き振りの参考書はあまり売れないと聞いております。私たちの欲しい参考書はないといっても良いでしょう。丁度そのときに、この度、塩﨑先生の著書が出ることを耳に入れ、兼ねてよりプリントなどで様々な工夫をしておられるので、私もそういう本が見たく、是非ともとお勧めした次第です。いたるところに、知識を整理するのに有効な別解あり、論証の確実でない解で確実化を要求する怪答あり、時期に応じ必要に応じて役に立つ記事が満載されていることでしょう。実物を見ていないので、言葉足らずで申し訳ありませんが、皆様一度手にされたら、種々の発見を楽しまれることでしょう。さらに追加されていって、生徒の数学の学力が下がったといわれる時代を共に切り抜けていきたいものです。

(旧同業者)

『平らなようで、じつは曲がっている面』

浜口 隆之

平成元年に塩﨑先生と私は同期で灘校に勤め始めました。以来,親しくおつきあいさせていただいています。廊下や職員室ですれちがうと,たいてい「浜口さん,こんなん知ってる?」と声がかかり,おもしろい話題を提供(挑戦?)してくださいます。いまから思えば,私が塩﨑先生から教えていただいたことは相当な量になるでしょう。

さて、あるとき、塩﨑先生からこんな話があった。

"らせん階段の面"は平面に展開できるか?というのだ。何でも、建築家からの質問らしい。(らせん階段の面とは、らせん階段の段をなくして斜面にしたもの)

これは私に答えることのできた(数少ない)問題の1つなので、簡単 に紹介させてもらうことにしよう。

以下は、この面の"曲率"を求める計算である。

xyz座標で、らせん階段の面を助変数 r、 θ を使って、

$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = a\theta$ $(r \ge 0)$

と表すと、面上の線素は

$$ds^{2} = dx^{2} + dy^{2} + dz^{2} = dr^{2} + (r^{2} + a^{2}) d\theta^{2}$$

と書ける。これから、計量テンソル(第1基本量)

$$g_{11}=1$$
, $g_{12}=g_{21}=0$, $g_{22}=r^2+a^2$

がわかる。 $(r を添字1 に、 \theta を添字2 に対応させた)$

ちなみに反変成分(逆行列)は,

$$g^{11}=1$$
, $g^{12}=g^{21}=0$, $g^{22}=\frac{1}{r^2+a^2}$

また、 g_{ij} の偏微分係数のうち0 でないものは、

$$\partial_1 g_{22} = 2r$$

次にクリストッフェル記号

$$\Gamma^{i}_{jk} = \frac{1}{2} g^{im} (\partial_{j} g_{km} + \partial_{k} g_{jm} - \partial_{m} g_{jk})$$

を計算すると(上下に出てくる添字は和をとる(アインシュタインの規 約)), 0でない成分は、次の3つだけである。

$$\Gamma^{1}_{22} = -r$$
, $\Gamma^{2}_{12} = \Gamma^{2}_{21} = \frac{r}{r^{2} + a^{2}}$

これから、曲率テンソル

$$R^{i}_{i12} = \partial_{2}\Gamma^{i}_{i1} - \partial_{1}\Gamma^{i}_{i2} + \Gamma^{k}_{i1}\Gamma^{i}_{k2} - \Gamma^{k}_{i2}\Gamma^{i}_{k1}$$

の適当な1つの成分を求めることができて、次のようになる。

$$R^2_{112} = -\frac{a^2}{(r^2 + a^2)^2}$$

ガウスの基礎方程式の1つ $R^2_{112}=Kg_{11}$ を使うと、曲率K(ガウスの 全曲率)が次のように求められる。

$$K = -\frac{a^2}{(r^2 + a^2)^2}$$

こうして, この面の曲率は負であることがわかる。

したがって結論としては、平面への展開は不可能であるということにな る。

らせん階段の面の問題は、これにて一件落着。(^o^)/

* * * * *

「平らなようで, じつは曲がっている面」の例としては, シュバルツシルト時空(静的球対称時空)の黄道面がある。

太陽系空間で太陽を通る一つの平面を想像してほしい。これは「一見 どうみても平らなのに、平面への展開が不可能な面」なのである。いわ ゆる、重力による空間のゆがみというやつだ。

上の計算と同じ手順で, 面の曲率を計算してみよう。

シュバルツシルト時空の線素の式

$$ds^{2} = \left(1 - \frac{R}{r}\right)(c dt)^{2} - \frac{1}{1 - \frac{R}{r}}dr^{2} - r^{2}\left\{d\theta^{2} + (\sin\theta d\phi)^{2}\right\}$$

で黄道面 $\left(\theta = \frac{\pi}{2}, d\theta = 0\right)$ を考えると、線素(の空間部分)は、

$$dl^{2} = \frac{1}{1 - \frac{R}{r}} dr^{2} + r^{2} d\phi^{2}$$

という形になる (r>R の範囲で R はシュバルツシルト半径)。 助変数 r を添字 1 で、 ϕ を添字 2 で表すと、計量テンソルは、

$$g_{11} = \frac{1}{1 - \frac{R}{r}}, \quad g_{12} = g_{21} = 0, \quad g_{22} = r^2$$

$$g^{11} = 1 - \frac{R}{r}$$
, $g^{12} = g^{21} = 0$, $g^{22} = \frac{1}{r^2}$

0 でない偏微分係数は、 $\partial_1 g_{11} = \frac{-R}{(r-R)^2}$ 、 $\partial_1 g_{22} = 2r$

0 でないクリストッフェル記号は,

$$\Gamma^{1}_{11} = \frac{-R}{2r(r-R)}, \quad \Gamma^{1}_{22} = -(r-R), \quad \Gamma^{2}_{12} = \Gamma^{2}_{21} = \frac{1}{r}$$

曲率テンソルの1つの成分 R^2_{112} は、 $R^2_{112} = \frac{-R}{2r^2(r-R)}$

以上から、曲率
$$K=R^2_{112}/g_{11}$$
 は、 $K=-\frac{R}{2\,r^3}$

したがって、曲率は負であり、黄道面の幾何学は「負の曲率をもつ面

の幾何学」になっている。そこでは三角形の内角の和は 180°よりも小さくなってしまうのだ。

では、黄道面はどのような形の曲面と等価なのであろうか。

普通のユークリッド空間中の曲面で、同じ g_{ij} をもつ曲面を作ってみよう。

つまり、線素の式が

$$dl^{2} = \frac{1}{1 - \frac{R}{r}} dr^{2} + r^{2} d\phi^{2}$$

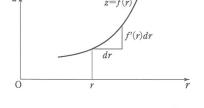
となるような曲面を作ってみようというわけだ。

r, zを普通の(正しい寸法の)座標として、下図のような直交座標を考える。関数 f(r) をうまく選んで、

「曲線 z=f(r) をz軸のまわりに z

1回転させてできる曲面」

が求めるものになるようにしてみよ う。



曲面上で、回転方向(ϕ 方向)の 微小線分の長さは $rd\phi$ になってい

るので、線素の式の第2項は実現できている。

曲面上で、 r方向の微小線分の長さの2乗は

$$dr^2 + \{f'(r) dr\}^2$$

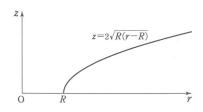
である。これが線素の式の第1項と一致するためには,

$$dr^{2} + \{f'(r) dr\}^{2} = \frac{1}{1 - \frac{R}{r}} dr^{2}$$

この方程式を解けば関数 f(r) が決定できる。整理すると、

$$f'(r) = \sqrt{\frac{R}{r - R}}$$

積分して、 $f(r)=2\sqrt{R(r-R)}$ これは無理関数(放物線を横倒しにしたものの一部)であり、右図のような形になる。



これをz軸のまわりに1回転させてできる「すりばち状の曲面」が求めるものである。

(灘高等学校 物理科)

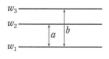
万国博覧会旗と波の描法

吉井 政典

以前の勤務校で、プログラミングの授業をしたことがある。そのとき、 教材として百科事典からコピーしたいろんな旗を画面に表示することに した。旗には日の丸のような簡単なものから、星条旗や五輪旗のように 複雑なものまでバラエテイに富んでいて、学ぶ者のレベルに応じたもの が選べてなかなか都合がよい。

例えば星条旗は三角関数を用いて星を描き,等差数列を用いて星と横縞を配置する。このように旗で必要になるのはほとんど等差数列であるが,右図の万国博覧会の旗は珍しく別の数列である。旗を描くために次の問題を調べてみた。

(**問題**) 渚に漣が寄せている。上空から見たとき等間隔の平行線に見える波を,渚で波に垂直な方向から見たとき,一番手前の波から順に w_1 , w_2 , w_3 ,

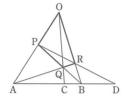


…… とする。 w_1 から w_2 , w_3 までの長さをそれぞれ a, b とするとき, w_1 から w_n までの長さ a_n を a, b で表せ。ただし,b < 2a < 2b

準備として次の補題を用意する。

(**補題**) 四角形 OPQR において 2 組の対辺が各々,点A,Bで交わるとする。対角線 OQ,PR が直線 ABと交わる点を C,Dとするとき,4点A,C,B,Dは調和点列をなす。

(略証) △OAC, △OCB, △OAB におけるメ



ネラウスの定理の等式を辺々掛けると

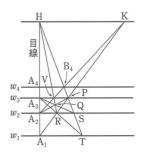
$$AC: CB = AD: DB \cdots \bigcirc$$

これは変形して
$$\frac{1}{AC} + \frac{1}{AD} = \frac{2}{AB}$$
 …… ②

式①, ② は A, C, B, D が調和点列であることを表す。

(証終)

補題を用いて問題を解こう。波 w_1 , w_2 , w_3 , ……と目線の交点を A_1 , A_2 , A_3 , ……とし, w_2 上の任意の点をRとする。 A_1R と w_3 , A_3R と w_1 の交点を A_2 P, A_3 P, A_4 P, A_5



行な直線が求める第 4 波 w_4 である。なぜなら海面を上方から見ると四角形 A_1TPA_3 は長方形で A_1P と A_2V は平行であるから,渚で見ると共に水平線上で交わる。同様に w_5 以下も順次作画できる。

次に一般項 a_n を求めよう。 $\mathrm{HA}_1 = h$, $\mathrm{HA}_n = h_n$ とおくと

$$a_n = h - h_n$$
 ····· ①

四角形 PQRS について補題を適用して H, A_3 , A_2 , A_1 は調和点列 をなすから、

 $HA_3: A_3A_2 = HA_1: A_1A_2$

ゆえに h-b:b-a=h:a

したがって
$$h=\frac{ab}{2a-b}$$
 …… ②

 $\{h_n\}$ は調和数列であるから

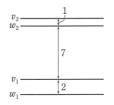
$$\frac{1}{h_n} = \frac{1}{h} + (n-1)d$$
 とおくと $n=2$ のとき $\frac{1}{h} + d = \frac{1}{h-a}$ から

$$d = \frac{a}{h(h-a)}$$

ゆえに
$$\frac{1}{h_n} = \frac{1}{h} + \frac{(n-1)a}{h(h-a)}$$

①, ②
$$\sharp$$
 b $a_n = \frac{(n-1)ah}{h-a+(n-1)a} = \frac{(n-1)ab}{2(n-2)a-(n-3)b}$

(類題) 漣の波頭が白く泡だって、海面を上空から見たとき青地に細い白のストライプが入った布のように見える。その波を、渚で波に垂直な方向から見たとき、一番手前の波の白い部分が直線 w_1, v_1 、次の波の白い部分が直線 w_2, v_2, \cdots に見える。 $w_1 \ge v_1, v_1 \ge w_2, w_2 \ge v_2$ の間隔が各々2, 7, 1



に見えるとき、 w_1 から w_3 、 v_3 までの間隔を求め、 w_3 、 v_3 を作画せよ。 (答) 水平線まで 30 より 180/13、130/9 作画は略。

(清風高等学校)

ルミナリエ

横谷 佳弘

私が結婚をした年は大変な年で、毎日決まった時間に無言電話があったり変な FAX が送られてきたりで、うちの奥さんも毎日の事でまいっておりました。そんな折、その時間に電話が鳴り、うちの奥さんが出て、しばらく沈黙のあとに一言『あんた、誰?』。電話の向こうの人が驚いたように『あのー、塩﨑です。』それがうちの奥さんと塩﨑先生との最初の会話だったように記憶しています。それから、塩﨑先生とは家族でお付き合いをさせていただいております。

特に印象に残っておりますのは、'98、'99 の12月に行った神戸のルミナリエです。夫婦で一度観に行きたいと話していたところに塩﨑先生からお誘いの電話が。当日はとても寒くて人も多かった思い出があります。塩﨑先生は、ルミナリエをただ観に行くというだけでなく、まずは腹ごしらえとして夕食は神戸ならではという所で食べようと店を探しておいてくれたり(小さな中華料理のお店ですが味が絶品でこれだけでも充分

満足しました。)、ルミナリエを一通り観て夜の北野の異人館の通りを歩こうと計画してくれたり、ルミナリエのパンフレット(JR等に置いてありますがなかなか手に入らない)をそれとなく揃えておいてくれたり、などいろ骨を折っていただきました。おかげでうちの奥さんも大喜び。大寒しい神戸の一日になりました。

'01年の6月18日,ようやく子どもが授かり,ルミナリエは当分の間お預けという形になりましたが,ま

ルミナリエにて 左:筆者,右:塩﨑先生

たいつか塩﨑先生とうちの家族とでルミナリエを楽しみたいと思っております。

(大阪工業大学高等学校)

「この問題どう思う」が私は大好きです。

藤原 進一

「ところで、藤原君、この問題どう思う?」 「ところで、藤原君、この問題どう解く?」

私は、塩﨑先生と出会うたび、この言葉を期待半分、恐ろしさ半分で 待っています。

ある日, 出版社の会合で初めてお会いして以来, 私が大阪大学数学科

の後輩ということもあって,目をかけていただき,それ以来,塩崎先生 が灘校,私が西宮在住という近さもあいまってか,よく飲み会に誘って いただいています。

まず、料理屋の席に着き、注文するか否かで、冒頭の、「ところで、……」と一発。お酒に酔ってきたかな?と思ったころに、また、一発(多いときにはここで、10発)。そして、別れ際にまた一発。

「先生、考える鉛筆も紙もありません」というと、「紙と鉛筆はいく らでもあるで」とかばんから出してこられます。

これが、また結構むつかしく、特に幾何の問題では、「余弦定理はあかんで」とか、最大最小問題では、「微分したらあかんで」など、禁じ手もいっぱい。

最初のころは、少し、びっくりして、ビールをのどに詰まらせながら、 私も、数学は結構好きな方なので、「ウーン」とうなって必死に解いて いました。

でも、最近では、この「藤原君……」が結構快感で、やっぱり、これがないと、塩﨑先生とお会いした気がしなくなりました。でも、周りの人に気づかれたら、飲み屋で必死で数学を解く「変な人」と思われているのかもしれませんね。

私も数学が本当に好きなので、私より、何倍も数学好きの塩崎先生に お会いできたことを本当にうれしく思っています。

ちなみに、一番印象的だったのは、1996年の大阪での大学入試懇談会のあと、中華料理屋での懇親会で料理を食べながらの話題です。

いつものように、「藤原君」から始まって、「来年から新課程やけどな、 こんな微分方程式、これからも OK なん、知ってる?」といわれて、

$$\frac{dy}{dx} = y^2 + y \qquad \cdots \quad \bigcirc$$

のタイプをあげられました。

私が、「これって変数分離形だから、新課程ではだめでしょう」というと、「そう思うやろ。でもこれって、次のようにやれば新課程でもできるんや」といわれて、

で、問題ないやろ。じゃ、①は

 $\frac{dx}{dy} = \frac{1}{y^2 + y}$ と変形できるので、上の論議をx、y を入れ替えてやればいいんや。

$$x = \int \frac{1}{v^2 + v} \, dy$$

で解けるやろ。これは、新課程でも OK や」 といわれました。

「なるほど」と感心し、「先生このネタ、使わしていただいていいですか?」と了解していただき、早速、生徒に話しました。

これが、ドンピシャ! 翌97年の滋賀医科大学で出題されたとき、「あー、塩﨑先生、神様」と叫びました。

(駿台予備学校 講師)

恐怖のナイトクラブ

石井 一郎

年に2回先生とお会いするようになって5年程経ちます。初めのうちは、お話をすることも、近づくこともできないくらい怖く感じられていました。先生がお生まれになった昭和16年は、十干十二支でいうと辛巳(かのとみ)(古文の辞書で調べたので間違いないと思いますが……)、まさに"からいへび"、あの目でみられるとすくんでしまう獲物のごときでした。先生とお話しできるようになったのは、本校数学科で細々開いている大学入試問題の"別解を考える会"についてお話しする機会があってからのことだったと思います。きっかけの問題は、大阪大学の'99の前期理系の4番でした。立体の体積を求める問題ですが、数種類

の解法があります。その中には、積分など使わなくても初歩的な中学生に理解できる解法があり、その解法についてお話ししてからだったと思います。それからが、毎回 "恐怖のナイトクラブ"となってしまいました。というのも、お会いすると、まず "話題提供しましょうか?"と最新の入試問題から "話題"を提供されます。2次会では、"この問題おもろい解法があるでェ"と箸袋などに問題を書いてくださいます。そのあとが大変! "解けるまで飲んだらあかんで!"当たり前の解法では飲ませてもらまません。ときどき見に来られては、"まだ解けへんの?"

これだけのことなら、ただの虐めですが、酔いも醒めてきた頃に救いの手を差し伸べてくださり、"できの悪い生徒"には、きちんとヒントを教えてくださいます。そして、ときによっては、ご自分の部屋まで呼んでいただき、ご丁寧な解説までしてくださいました。小生の勉強不足を反省するとともに、数学のおもしろさと問題を解く"緊張感"を味わうことのできる数少ない一時です。

小生も、教壇に立つ身として塩﨑先生のような"鬼"に少しでも近づけたらと思っています。後は、塩﨑先生に教えていただいた問題を2問ほど挙げてみたいと思います。皆さんも塩﨑先生から聞かれたかも知れませんが……。

問. $\frac{a^2+b^2+c^2}{3} \ge \left(\frac{a+b+c}{3}\right)^2$ を証明せよ。ただし、a、b、c は実数とする。

(証明)
$$\frac{a^2+b^2+c^2}{3}-\left(\frac{a+b+c}{3}\right)^2$$
 は 3 つの実数 a , b , c の $(2 乗の平均)-(平均の 2 乗) すなわち a , b , c の分散であるから明らかに 0 以上である。$

分散を求める公式 $V(X) = E(X^2) - \{E(X)\}^2$ の思わぬ場所での応用です。一般に

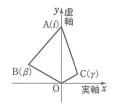
$$\frac{x_1^2 + x_2^2 + \dots + x_n^2}{n} \ge \left(\frac{x_1 + x_2 + \dots + x_n}{n}\right)^2$$

を証明するのはこの解法が"最速"だと思います。他の別解は、本校ホームページの"別解を考える会"を見て御教授下さい。

ホームページアドレス

http://www.seiryo.okayama-c.ed.jp/kyoka/betukai/index.htm

間. 点Oを原点とする複素数平面上に、三つの複素数 i, β , γ を表す点 A, B, C m \angle COB=120°, \angle BAC=60°, OB=2OC, AB=AC を満たし、図のように与えられているとする。 このとき、 β , γ を求めよ。



(H13年度センター追試より)

(解) \angle COB=120°、 \angle BAC=60° より、四角形 OBAC は、円に内接し、更に \triangle ABC は正三角形である。OC=p、AB=q とおく。 トレミーの定理 OA·BC=AC·OB+AB·OC に代入して、

$$\begin{aligned} &1 \cdot q = q \cdot 2p + q \cdot p & \text{ \sharp sort $p = \frac{1}{3}$} \\ &\angle \text{COA} = 60^{\circ} & \text{ \sharp sort $\angle \text{CO}x = 30^{\circ}$} \\ &\gamma = \frac{1}{3} (\cos 30^{\circ} + i \sin 30^{\circ}) = \frac{\sqrt{3} + i}{6} \end{aligned}$$
 同様に
$$\beta = \frac{-\sqrt{3} + i}{3}$$

トレミーの定理の応用でした。幾何を高校で習っていない若い教員に はなかなか思いつかない解法です。

最後に。いつまでも"元気な鬼"でいて下さい。還暦おめでとうございます。

(岡山県立倉敷青稜高等学校 数学科教諭)

塩﨑先生から学ぶ

保木本 彰

私と塩﨑先生との出会いは、四年前、先生の府立高校時代の先輩であ

る石山先生の紹介で、大学入試検討委員会に出席するようになってからです。初めて私が委員会に出たとき、よく発言される人だなと思っていました。自分のメモを見ながら、ちょっとメガネを左手で持ち上げて、「この問題は、~とも解釈できるんとちゃうか。この設問悪いで」、「この問題の設問の順序、逆の方がええんとちゃうか」etc.です。学校行事等で先生が委員会に出席できない場合は、通称"塩﨑メモ"なるものが出席者全員に配布されます。B4の用紙2枚には、手書きで各大学の各問題についてのコメントが書いてあります。それには、私が見すごした所、生徒が迷いそうな部分などが的確に示されています。塩﨑先生の存在がなかったら、大学側に対する質問がずいぶん簡素で味気ないものになったろうと思います。私もその中で学ばせてもらえますし、また委員会としても有り難い存在だと思います。

委員会終了後、みなで一杯やるのですが、宴たけなわのときに塩﨑先生がカバンから一枚のコピーを取り出されて、それにはちょっとおもしろい数学の問題が書いてあるのですが、それから数学談義になります。最初私は、酒の席でも数学やっていることにびっくりしましたが、そこに異和感はありません。みなもその問題に真剣に取り組んでいるのです。

個人的には、これも一杯やりながらなのですが、私の学校が2年後に6ヶ年一貫コースを設けるということで、数学の中高を通しての教科内容の配列の順番を教えていただいたり、本を貸していただいたり、感謝しております。

先生は毎日朝早く起きて、数学の問題に取り組むのが日課のようです。 大学入試問題の鬼はこうして生まれたと思います。普通に考えれば、 「起きても数学、仕事でも学校で数学、酒を呑んでいても数学」ではた まらないと考えがちです。先生は毎年毎年すべての入試問題を解いてい らっしゃいます。まわりから見れば、'よくそんなしんどいことを平気 でやる。'とびっくりします。ところが先生にとっては、それは趣味で す。ただ好きなことを楽しんでやっていらっしゃるだけのようです。趣 味と仕事が一致する、これ程すばらしいことはないと思います。数学の 教師は、塩﨑先生にとって天命なのでしょう。だから本人は楽しいし、 まわりの人から見ると、輝いて見えるのでしょう。もうひとつ先生を見 ていて気がついたことがあります。先生のメガネの奥の目が「子供のような目」なのです。数学の問題を解く時も、一杯やる時も、どんな時も一瞬一瞬において、何に対しても、好奇心でワクワクしながらチャレンジしていく少年の目なのです。真理を見つめようとする目だと思います。塩﨑先生、これからもさらに若々しく、チャレンジして下さい。そして、いろいろなことを学ばせて下さい。

(履正社高等学校)

塩﨑先生の人柄

小笹 清司

塩﨑先生の器量

塩﨑先生とは昨年5月に私の友人の紹介で知り合うことができました。 それから数回ではありますが、数学の勉強会を通して先生とお付き合い をさせていただいております。

塩﨑先生とはまだ7,8回程度しかお会いしてはいませんが、とても器量の大きい方だと思います。先生はご自分の研究成果を惜しみなくプリントとして私や周りの方々に配られ、私の浅はかな質問にもしっかりと答えて下さるというように、できるだけ知識をまわりの人たちと共有するように努める方です。たしか最初の飲み会での歓談のときですが、私は自分の勤めている学校の情報をできるだけ他の学校の先生には話さないという内容のことを言ったと思います。今働いている学校に採用されたばかりで少し義理のようなものを感じていたのかも知れません。しかし、先生の行動や考え方にふれたとき、私の考えがいかに幼稚で薄っぺらいものかということを実感しました。ある日の食事会で先生は私が話した内容にふれ、やんわりと私の浅はかな考え方を軌道修正して下さったことを思い出します。

塩﨑先生に薦められた本

塩﨑先生から「エリート教育の光と陰」という本をお借りしました。 この本は、灘校に関しての取材を1冊にまとめたもので、進学校の在り 方を肯定的に見た光の部分と、否定的に見た陰の部分の両面からとらえ ています。今まで、本の内容に関して先生と話す機会はなかったのです が、ボロボロになったその本から教育者としての先生の横顔を垣間見た 気がします。京都のごく普通の公立高校を卒業した私にとって、考えさ せられることが多分にありました。

塩﨑先生の勉強量

塩﨑先生が灘校生の心をしっかり摑んでいるのは先生の才能もあろうことと思いますが、それにも勝る人並みはずれた努力によるものだということを感じます。塩﨑先生をはじめとする勉強会に私も何度か出席したことがあります。まず最初に驚いたことは塩﨑先生が解かれた入試問題の量でした。その年の全大学の問題をほとんど解いているのでその数や大変なものですが、色々な解法を吟味しながらそれを数ヶ月で仕上げてしまうところなどは通常の方にはとうてい真似の出来ないことです。驚くのはその紙の分厚さだけでなく、毎年のことを積み重ねてできた約20年分の解答がきれいな細かい字でファイルされてキチンと保存されていることです。

勉強会では前もっていくつかの大学を決めておき、そこで出題された 問題を解いてからその会で解答を付き合わせるのですが、どの先生も大 変熱心で必ず全問題を解いてこられます。このような会ですから私も感 化されないはずがなく、普段から本当にがんばらねばと思わずにはいら れないほど私のモチベーションを高めてくれます。これだけでも私には ありがたいことなのですが、塩﨑先生の鮮やかな解法にふれることがで きるという点でも出席させていただけることに感謝しています。

塩﨑先生に引退の文字はない

勉強会のあとは決まって飲み会となるのですが、そのときでも塩﨑先生は紙と鉛筆を持ち、「こんなのどうする?」と私たちに尋ねます。飲

んでいるときでも数学の話題をしている先生の顔は楽しそうに思えます。 私がお酒の席で数学の問題を解くことなど滅多にないことですが,先生 の魔力なのでしょうか,私も飲食を忘れ紙とにらめっこしてしまいます。 そんなパワーをもった先生も還暦を迎えられたということですが, 「本当に60歳?」と聞きたくなるほど頭の細胞は若々しく,まだ20歳く

らいじゃないかと感じます。これからもエネルギッシュな塩﨑先生の活

躍をますます期待しています。

(高槻高等学校)

塩﨑先生に師事して

西出 太郎

僕は中学・高校の6年間,塩﨑先生に数学を教わりました。また、それだけでなく塩﨑先生は学年主任として僕たちをご指導下さいました。

このたび、先生が還暦をお迎えになるにあたってその記念誌を発行な さるということで、僕も縁あってこうして寄稿させていただく機会を得 たわけです。まずは、塩﨑先生にご指導いただけたこと、そして今回、 先生の還暦記念誌の1ページを担わせていただけるという身に余る幸運 に、感謝したいと思います。

さて、僕は先達ての卒業式で答辞を読ませていただきましたが、そのなかで僕は、「塩﨑先生。先生はまさに日本一の数学教師でした」と先生のことについて申し上げました。先生の授業を受けてきての感想をまとめて、「ハイレベルでありながらわかりやすく歯切れのよい授業、そしてハイセンスなギャグに湧き起こる爆笑の渦の中で、僕たちは感動を禁じえませんでした」そして、最後に、「先生の授業を受けられたことを僕たちは誇りに思います」と言いました。あいにくその原稿が手許にないため不完全な記述になってしまっているかと思いますが、概ねそのようなことを述べたかと記憶しています。

どんな問題の質問に行っても、普通の解法をわかりやすく教えて下さるのはもちろんのこと、わかりやすく鮮やかな別解や、僕の理解をはるかに超えるような高等な解法まで用意して下さっていたし、どんな簡単な、基本的なことに関する質問でも嫌な顔ひとつせずに優しく教えて下さったことをよく覚えています。時にはむしろ先生のほうで楽しんでいちっしゃるようにも見えたこともありました。

このようにあらゆる意味で、先生が日本一の数学教師だということは、 先生の授業を受けたことのある方なら誰も異議を唱える者はいないだろ うと思います。綿密に準備されたわかりやすい授業、ギャグの面白さ (?)、あるいはインパクト。どんな質問にも答えて下さるきめ細かな指 導。そして巨人ファンの大阪人。

たとえば数学はあまり得意でなかった僕などでも数学オリンピックの 予選に通れたのも、まさに先生のおかげだったと思っています。

また、先生は数学教師であったというだけでなく、僕たちの学年主任 として、男の生き方のようなものを提示して下さったと僕は思っていま す。何かひとつ輝きを放つものを持っていらっしゃる方というのは、黙 っていても、この人はすごいなという雰囲気を持っているものだなと思 うことがしばしばありますが、先生も僕が人生の中でこれまでに見てき

左:筆者,右:塩崎先生 (平成13年2月8日灘高卒業式の日)

たまさにその一人でした。

僕のような若輩者が、おこがましいことを言ったかもしれませんが、 ともあれ塩﨑先生にはこれからもバリバリ現役として灘校の後輩たちを 指導していただきたいと思います。

僕のほうも、東京に出て半年たつわけですが、気をひきしめて大切な ものを見失わないようにがんばりたいと決意を新たにする次第です。こ れからもよろしくお願いします。乱文乱筆御容赦のほど。

(東京大学教養学部文科 I 類 1 年 灘高53回生)

6年間お世話になって

六反 啓文

僕は1995年4月に灘中学校に入学し、その後の6年間塩﨑先生に数学を教わった灘校53回生の1人です。たまに妹の数学の面倒を見たりするのですが、そのときに実感するのが、教えることはできても、興味を持たせることはすごく難しいということです。そういう意味で、あの楽しい授業を通してぼくら53回生に、(そしておそらく塩﨑先生に教わったことのある多くの先輩方にも)いとも自然に数学の面白さを伝えた塩﨑先生に頭が下がります。

僕が小学6年のとき(1994年),月刊「中学へのチャレンジ算数」という雑誌の灘中学校のページに数学の先生の写真が載っており、やくざみたいで(失礼)、厳しそうな先生が灘中にはいるんだな、と思った。それが実際に入学してみると担任団に本物がいらっしゃり、びっくりしたという覚えがある。

塩﨑先生の授業は、楽しく、厳しく、元気な授業で、僕は体育の次に好きだった。簡単な問題が解けないときには「こんな問題もできんのか!」、教室が騒がしいときには「うるさい!」と険しい表情をなさる

塩﨑先生も時にはあったけれど、普段はギャグの冴える頭のやわらかい授業だった。「S級ギャグ」といっとき呼ばれたそのギャグの中でも、板書を手で消された後の「おれの素肌がよごれる」というひとことがおかしかった。

また、授業中に「今、ふと思いついたわ」とさりげなく言って黒板に 鮮やかな別解を書かれる姿は、少し神がかり的である。「けさ目が覚め たとたん、頭の中に浮かんだんや」という別解もあった。布団の中でひ らめくと聞いては、ぼくらはもう笑うしかない。四六時中数学のことを 考えておられる塩﨑先生ならではのことである。

また、漢字に強い(うるさい?)塩﨑先生は、「じゅず順列のじゅずは、漢字で書くと数珠か珠数か、どっちや?」とか、「凹の書き順を知っとるか?」「凸の画数は何画や?」といきなりぼくらに問いかける面白い先生である。

塩﨑先生は、ご自分の作る中間試験や期末試験でも遊び心たっぷりの出題をなさる。中学生の時分に、ボイルの法則の計算問題が出た。次をふと見ると、「この法則名を答えよ」とある。う~む、化学をやっていない生徒への意地悪なのか、幅広く勉強せよというメッセージなのか。 僕は「シャルルの法則」と書いて※だったのをよく覚えている。

授業以外でも、廊下で会ったりするたびに、「六反にはこの問題はもう言うたかな」といって面白い問題を紹介してくださる。「う~ん」とうなっていると、「ぼくもまだ解いてないんや。ゆっくり考えてきてみ」といって紙に問題を書いて渡してくださる。家に帰ってその紙と格闘するわけだが、滅多に解けるものではなかった。図形の問題のときには、「幾何の強い六反は、この問題、どや?」と言われる。幾何は好きだが、

「幾何の強い六反は、この問題、とや?」と言われる。幾何は好きたか、 それ程得意でもない。もっとできる友だちがたくさんいる。先生は濵砂 君(幾何に強い53回生)と勘ちがいされていたのでは、と今でも思って いる。

塩﨑先生にまつわる最後の思い出は、ぼくらの東大入学試験のとき(2001年2月)である。試験2日目の朝、試験会場へ向かうと、校門の前に塩﨑先生が立っておられる。1日目に数学の試験があったのでそれが気になっておられるだろう。しかし受験生に対してご自分からそれは

切り出しにくいだろう。そう考えて、前日の数学について僕から話しか けたところ、「京大と阪大は解いたけど、東大はまだや」とおっしゃる。 ぼくらに対する配慮の深さに心打たれた一件であった。

塩﨑先生、ご還暦おめでとうございます。これからも、ますますお元 気で頑張って下さい。

(東京大学教養学部理科III類1年 灘高53回生)

灘 校 新 聞 (平成元年)

第194号

131

⑩艦校へきての抱負 印度める本 12好きなスポーツ ⑧本校の印象 好きなプロ野球球団

(まそわれて ③大阪教育大学附属平野校舍 ⑤数学·M1·H2·H3 ②天阪市・47歳・24年

⑧息子が兄弟ともこの学校に 男ばかりで数が多いので、 来ていて、雰囲気はわかっ

③前回勤めていた学校

⑥自分の学生時代をふり

⑦教師になった動機 ⑤担任教科・学年 ④赴任の動機 返って

塩崎先生

それに、教えるのが好きだ ったし、子供も好きだった

⑦僕自身、いい ⑥高校のときは 英語部で活躍 ないなあ。 大学では特に 親友を得られ

先生にお話をうかがってみました。

ると評判の塩崎先生。 あの多質谷先生の教え子でいらっしゃり、授業が似て山先生のかわりに、三人もの先生方がいらっしゃった。 もまたしかり。今年三月にただお一人おやめになった築 を補うかのように、一年生がどばっと入ってくる。先生 四月——。 毎年この月には、二月に抜けた三年生

5 新任教 師

インタヴュ I 5

私が父に教わったこと

かずひこ

私の誕生日は5月8日です。この「5」と「8」という数は、二つの「1」から始まるフィボナッチ数列「1, 1, 2, 3, 5, 8, 13, 21, 34, …」の第5項と第6項にあたります。ご存じのように、この数列の隣り合う項の比率は、限りなく黄金比 1.618… へと近づいていきます。父が昭和16年9月25日という日に生まれて、数学の道に進むことを運命づけられていたように、自然の神秘の持つ美しさへと向かう果てしない道のりの、その入口に生を受けた私がいまデザインの仕事に携わっているのも同じく運命なのかもしれません。

私は大学で建築学を専攻していたのですが、私のような理系出身のデザイナーというのは珍しいらしく、いわゆる芸術家肌のデザイナーの方たちに、「あなたがこれまで大学などでやってきた思考のしかたは言わば単に考えるだけのことであって、私がやってきた創造的な発想とは全く別物である。」というようなことを言われることがあります。しかし、私はこの考えには断じて異を唱えます。

子供の頃から、父が数学教師ということで、よく人から「お父さんに数学を教えてもらえていいね。」と言われてきました。その頃は、別に何を教えてもらったという自覚はたいしてなかったように思いますし、さらに言うと、こういう父がいるということが自分にとってどういうことなのかということを、あまりよくわかっていなかったように思います。しかし、今ふりかえってみれば、私が父に教わったことは、「科学的思考とは決して創造性と相反するものではなく、むしろ本当の科学的思考はきわめて創造的だということ」だと言えましょう。

さて、ここで大切なのは、父が私に教えたのではなく、私が父から 勝手に教わったということです。昨今では残念ながらあたりまえのよ うになってしまった「勉強するとは教えてもらうことだ」という勘違 いは、私が中学の頃にもちらほらと見受けられました。しかし、幸い にして私はそんな勘違いをしてしまうことを免れました。私が見てい た父は、いつも勝手に楽しそうに数学をやっていましたので、私もそ れにつられて勝手に楽しく自分で考える習慣ができたのかもしれませ ん。

そんな父もめでたく還暦を迎え、いつか仕事の第一線から身を退く 日が来るのでしょう。これからは自分一人で勝手に数楽するだけでは なく、家族みんなで一緒にお互いの趣味や考えを楽しむ人生もいいの ではないかしら、と余計なおせっかいを焼きながら筆を置くことにし ます。

どうか末永くお元気で。

(勝彦の二番目の子・プログラマー・デザイナー 灘高43回生)

筆者が持っている一番古い入試問題集の表紙

(社名は数研出版の前身)

(因みに定価は45円であった。)

東京出版 「中学へのチャレンジ算数」 1994年 6 月号 より

(『お寄せいただいたお言葉』の六反君の文章に出ている。)

^{学校訪問} 難中学校

里野泰男

JR 神戸線の住吉駅から徒歩7~8分の、灘中学を訪問いたしました。数学料の塩崎勝彦先生をお訪ねしたところ、数学オリンピックと東大人試の話が出ました。それらを小学生にも理解できるような表現に変えて、下に紹介いたします。読者のみなさんもチャレンジしてみてください。でて、ことしも7月の国際数学オリンピック第34回ホンコン大会をめざして、第4回日本オリンピックが行なわれました。予選では128名合格(1243名参加)中、灘生15名、本選では19名合格中、灘生9名、代表には6名中、灘生4名という結果で、灘年の活躍が光りました。

灘中高数学科 塩崎勝彦先生

-----ことしの数学オリンピックの国内予選, 灘の生徒たちは大健闘しましたね.

灘の子供たちはよう勉強しますわ. 学校の勉強もよくやるし、スポーツでも何でも大変積極的です. 国際数学オリンピックについても、教員はポスターを掲示するくらいで、特別には何もしません.

私たちは授業を一生懸命やるだけ、生徒たち にも学校の勉強をしっかりやれと言うばかりで す。

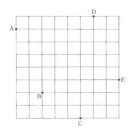
1. 日本数学オリンピック

予選・地区大会【問題 12】より改題 ('94 年 1 月 15 日)

たて横ともに 8km の正方形をした都市があり、図のように 1km 簡隔で道路が走っています。A、B、C、D、Eの5人は図の場所にいますが、この道路ぞいのどこかの場所で落ち合って会合することになりました。

人は道路上だけを動くものとし、全員が動く 距離の和がもっとも小さくなるようにするには どの場所で会合したらよいですか。

図に、その場所を示す点を書きなさい.



2. 東京大学(前期)

入試【問題8】より改題

('94年2月25日)

たて横ともに 5km の正方形をした都市があり、図のように 1km 間隔で道路が走っています。 A, B 2 人の家は図の場所にあります。

人は道路上だけを動くものとし、A、BがC

の家まで動く、もっとも短い距離は等しいそうです. Cの家は道路 ぞいのどこにあると考えられますか.

また、A、B 2 人の家がつぎの図の場所にある場合、C の家は道路

ぞいのどこにあります か.

それぞれ、考えられ る場所すべてに印をつ けなさい.

68

- 算数に関しては、小学生はどんな勉強を したらいいですか.

小さいときに鍛練したことは大きくなっても ずっと定着します。自分の頭で考え、発想する 習慣をつけてください、しかし、あまり知識や 公式ばかり覚えるようにしていると, 独創性や 思考力が育たないように思います。とくに、中 学高校で幾何(図形)の勉強を始めるとその差 がはっきりしてきます。 自分で考えることの好 きな子とそうでない子の差が、

それにしても、ここに集まる子供たちはいろ んなことをよく知っています。ことしの灘中の 入試のときには, 答案に

「これはフィボナッチ数列ですね、流石に灘中 です. 」(ロp.52 を参照してください。)

と落書きをした子がいました.「さすが」を ちゃんと「流石」と漢字で書いてあったし, フィボナッチ数列なんて言葉を知っていたのに はこちらも驚きました.

数学や算数の問題で、最近、何か面白い ものはありませんか.

そうそう、数学オリンピックの予選の問題と 東大の入試問題によく似たものが出ましたよ。 あれはどちらも表現をやさしく変えれば、小学 生でも解けるのではないかな.

それではね, チャレンジ算数の読者にそれを プレゼントしましょう.

> こうして、左ページの2題ができました。思考 力と発想力を発揮して解いてみてください.

インタビュー終了後、2人の生徒を紹介してい ただき、電話でお話をしました。2人とも、日 本数学オリンピック本選でメダルを獲得した精 鋭たちです。

中村直俊くん(灘高2年)のお話

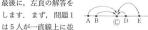
ふだん, 学校の勉強を中心にやっています。 灘という学校にはいい文化がたくさんありま すので、それを多くの人に知ってもらいたいと 思います.

横西久幸くん(灘高2年)のお話

灘は自由と自主性を重んじる学校です.

先生方は年をとられてはいますが、それぞれ の専門においてたいへん力のある方ばかりで, 尊敬せずにはいられません.

> 最後に, 左頁の解答を します. まず. 問題1



んでいる場合を考えます。このとき、全員が動 く距離の和がもっとも小さくなるようにするに は, 5人のまん中の人(上図では C)のところ に集まればよいのです. 理由はみなさん, 考え てください.

問題の図の5人の,左 右方向に関するまん中 の人は C, 上下方向に 関するまん中の人はE ですから, 会合する場 所は図の◎の点となり ます. 問題2の答えは つぎの図の通りです.

/これらの原題に興味がある人は、大学への 数学3月号,4月号を参照ねがいます。 (さとのやすお、教育クリエイター)

69

あとがき

恩師,同僚(先輩,同輩,後輩),友人,教え子の方々より身に余る 御言葉を戴き,感激いたしております。また,編集にあたっては,数研 出版(株)編集部の石川孝二様の労苦をいとわない御尽力に心より感謝 いたしております。また,藤原進一様には図版の作製に並々ならぬ御苦 労をおかけいたしました。深謝いたしております。この感激を忘れるこ となく,今後も精進していく所存です。

最後になりましたが、御批判、御叱正を戴けましたら幸甚に存じます。

平成13年9月25日 塩﨑 勝彦

参考文献

数研出版 数学入試問題集

旺文社 全国大学入試問題正解(数学)

聖文社 全国大学数学入試問題詳解

灘高等学校数学科編 大学別数学入試問題集

書名 数楽しませんか?

著者 塩﨑 勝彦

発行年月日 2001年9月25日

印刷 創栄図書印刷株式会社

